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Abstract. In this paper, two fully-discrete local discontinuous Galerkin (LDG) meth-
ods are applied to the growth-mediated autochemotactic pattern formation model
in self-propelling bacteria. The numerical methods are linear and decoupled, which
greatly improve the computational efficiency. In order to resolve the time level mis-
match of the discretization process, a special time marching method with high-order
accuracy is constructed. Under the condition of slight time step constraints, the op-
timal error estimates of this method are given. Moreover, the theoretical results are
verified by numerical experiments. Real simulations show the patterns of spots, rings,
stripes as well as inverted spots because of the interplay of chemotactic drift and
growth rate of the cells.

AMS subject classifications: 65M15, 65M60
Key words: Local discontinuous Galerkin methods, implicit-explicit time-marching scheme, error
estimate, growth-mediated autochemotactic pattern formation model.

1 Introduction

Complex pattern appears in active systems, such as bacterial colonies, birds flocking, fish
schools, insect swarms and other self-propelled particles [2, 9, 14, 15]. Several different
mechanisms underlying pattern formation in bacteria have been explored, for example,
temporal control of gene expression, density-dependent motility, quorum sensing, and
the phenomenon of chemotaxis. The model we focus on in this paper was proposed by
Mukherjee [13], which has shown interactions of bacterial growth kinetics, autochemo-
tactic movement and cell movement. In addition, growth is a key adjustment parameter
that can determine the spatiotemporal dynamics of a colony.
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Suppose Ω⊂R2 be a rectangular domain. The growth-mediated autochemotactic
pattern formation model [13] for self-propelling bacteria is demonstrated as follows in
dimensionless form:

∂ρ

∂t
=−∇·(ρp)+∇2ρ+gρ(1−ρ), (1.1a)

∂c
∂t
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∂p
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=−Γp+Dp∇2p+S∇c−Γ2|p|2p, (1.1c)

where ρ is the bacterial density, c is the self-secreted chemical density, and p=(p1,p2) is
the polarization. The variables and parameters in the model are defined as
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where α is the growth rate, γ is the decay rate of p, kd denotes a rate of natural degra-
dation, Dp and Dρ are the translational diffusion constant and the diffusion constant,
respectively, Dc is the diffusion constant, ka is the anisotropic correction term, k0 is the
local rate, ν0 is the self-propulsion speed of the bacteria, γ2 describes saturation in p at
strong alignment, g is the growth rate, and S is chemotactic strength. Here, the param-
eter S represents chemoattraction and chemorepulsion, for positive (S>0) and negative
(S<0) values, respectively.

There are few of numerical simulations for the growth-mediated autochemotactic pat-
tern formation model in self-propelling bacteria. In [13], the authors used the finite dif-
ference method to carry out numerical simulation, but there was no theoretical support
for numerical analysis. When there is not any growth dynamics (i.e., g=0), [10] explored
a mass-preserving characteristic finite element approach, and the convergence analysis
was well studied, yet only the first-order time scheme was developed. However, the
circumtance that g= 0 is not particularly practical since bacteria density cannot expand
locally in the absence of any bounds. Because the change in density is not minor, which
is a characteristic of this problem in some circumstances, we must explore approaches
with high resolution. As a result, for the model in this paper, we use local discontinuous
Galerkin (LDG) methods. To the best of the authors’ knowledge, this is the first paper
that discusses error estimates for the model with this method.

Inspired by Bassi and Rebay [3], the LDG method was introduced by Cockburn and
Shu [4] to solve the convection-diffusion equations. Thereafter, the LDG method has de-
veloped successfully and been employed in numerous models with higher-order and dis-
persive terms [21,22]. The principle of the LDG approach is to introduce certain auxiliary
variables to reduce the higher-order derivatives in the equations to the first-order, so that
the discontinuous Galerkin (DG) approach can then be used. Hence, the LDG approach
inherits advantages of the DG method, including good stability, high-order precision, as
well as flexibility on hp-adaptivity and complex geometry.


