Existence Results for the Higher-Order Weighted Caputo-Fabrizio Fractional Derivative*

Chunshuo Li^{1}, Qing Zhang ${ }^{1}$ and Qiaoluan $\mathrm{Li}^{1, \dagger}$

Abstract

By the definition of the higher-order fractional derivative, we explore the central properties of the higher-order Caputo-Fabrizio fractional derivative and integral with a weighted term. Furthermore, by dint of Schaefer's fixed point theorem, $\alpha-\psi$-Contraction theorem, etc., we establish the existence of solutions for nonlinear equations. We also give three examples to make our main conclusion clear.

Keywords Higher-order weighted fractional derivative, Caputo-Fabrizio derivative, existence

MSC(2010) 26A33, 35A01, 47H10.

1. Introduction

During the past decades, the Caputo fractional derivative (CFD) has been investigated by many scholars (see [13,18]). In the last few years, a large number of essays about a novel fractional derivative, Caputo-Fabrizio fractional derivative (CFFD), have emerged, and this kind of derivative has a better nature than the usual fractional derivative (see $[1-3,5,7,9,12,15,16,19]$). For instance, in 2020, Eiman et al., dealt with the nether class of fractional differential equations involving the CFFD and obtained the existence theory

$$
\left\{\begin{array}{l}
{ }_{0}^{C F} D_{x}^{\theta} u(x)=f\left(x, u(x),{ }_{0}^{C F} D_{x}^{\theta} u(x)\right), \quad x \in[0, T]=\mathbb{J}, \\
u(0)=u_{0}, \quad u_{0} \in \mathbb{R},
\end{array}\right.
$$

where $\theta \in(0,1], f: \mathbb{J} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ (see [9]). In 2021, Abbas et al., investigated the existence of solutions for the following Cauchy problem of Caputo-Fabrzio impulsive fractional differential equations

$$
\left\{\begin{array}{l}
\left({ }^{C F} D_{t_{k}}^{r} u\right)(t)=f(t, u(t)) ; t \in I_{k}, k=0, \cdots, m, \\
u\left(t_{k}^{+}\right)=u\left(t_{k}^{-}\right)+L_{k}\left(u\left(t_{k}^{-}\right)\right) ; k=1, \cdots, m \\
u(0)=u_{0}
\end{array}\right.
$$

[^0]where $I_{0}=\left[0, t_{1}\right], I_{k}=\left(t_{k}, t_{k+1}\right], k=1, \cdots, m ; 0=t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}=$ $T, u_{0} \in \mathbb{R}$, and $f: I_{k} \times \mathbb{R} \rightarrow \mathbb{R}, k=0, \cdots, m, L_{k}: \mathbb{R} \rightarrow \mathbb{R} ; k=1, \cdots, m$ are given continuous functions, ${ }^{C F} D_{t_{k}}^{r}$ is the Caputo-Fabrizio fractional derivative of order $r \in(0,1)$ (see [2]). In 2022, Abbas et al., investigated the existence of solutions for the Cauchy problem of Caputo-Fabrzio fractional differential equations without instantaneous impulses
\[

\left\{$$
\begin{array}{l}
\left({ }^{C F} D_{s_{k}}^{r} u\right)(t)=f(t, u(t)) ; t \in I_{k}, k=0, \cdots, m \\
u(t)=g_{k}\left(t, u\left(t_{k}^{-}\right)\right) ; \text {if } t \in J_{k}, k=1, \cdots, m \\
u(0)=u_{0} \in \mathbb{R}
\end{array}
$$\right.
\]

where $I_{0}:=\left[0, t_{1}\right], J_{k}:=\left(t_{k}, s_{k}\right], I_{k}:=\left(s_{k}, t_{k+1}\right] ; k=1, \cdots, m$, and $f: I_{k} \times \mathbb{R} \rightarrow \mathbb{R}$, $g_{k}: J_{k} \times \mathbb{R} \rightarrow \mathbb{R}$ are given continuous functions, $0=s_{0}<t_{1} \leq s_{1}<t_{2} \leq s_{2}<\cdots \leq$ $s_{m-1}<t_{m} \leq s_{m}<t_{m+1}=T$ (see [3]).

Abreast of the times, in 2022, Fernandez et al., conducted a formal study of weighted fractional calculus, and emphasized the importance of the conjugation relationships with the classical Riemann-Liouville fractional calculus (see [11]). For the study of Caputo-Fabrizio fractional derivative (CFFD) in the weighted field, in 2019, Al-Refai and Jarrah first proposed the weighted Caputo-Fabrizio fractional derivative (WCFFD) of order 0 to 1 , and demonstrated the existence and uniqueness of the nonlinear fractional initial value problem

$$
\left\{\begin{array}{l}
\left(D_{a,[z, w]}^{\alpha} f\right)(t)=g(t, f), t>a, 0<\alpha<1 \\
f(a)=f_{0} \in \mathbb{R}
\end{array}\right.
$$

where $D_{a,[z, w]}^{\alpha}$ is the WCFFD (see [4]). In 2020, Wu, Chen and Deng studied the existence and stability of solutions for the WCFFD type differential equations of order 0 to 1 (see [20]). However, fewer papers are on the higher-order WCFFD.

In this paper, we are concerned with the existence of solutions for the following nonlinear equations

$$
\left\{\begin{array}{l}
\left(D_{a,[z, w]}^{r} y\right)(t)=\xi(t, y(t)) \tag{1.1}\\
y^{(k)}(a)=0, \quad k=0,1,2, \cdots, n-1 \\
y^{(n)}(a)=1
\end{array}\right.
$$

where $1 \leq n<r<n+1, D_{a,[z, w]}^{r}$ is the higher order WCFFD, and $y \in A C^{n}([a, T], \mathbb{R})$, ξ are binary continuous functions

$$
\left\{\begin{array}{l}
D_{a,[z, w]}^{r}(y(t)-\varpi(t, y(t))=\xi(t, y(t)) \tag{1.2}\\
(y-\varpi)^{(k)}(a)=0, \quad k=0,1,2, \cdots, n-1 \\
(y-\varpi)^{(n)}(T)=0
\end{array}\right.
$$

where $y-\varpi \in A C^{n}([a, T], \mathbb{R})$, and ϖ are binary continuous functions

$$
\left\{\begin{array}{l}
D_{a,[z, w]}^{r} \frac{y(t)}{\varphi(t, y(t))}=\xi(t, y(t)) \tag{1.3}\\
y^{(k)}(a)=0, \quad k=0,1,2, \cdots, n-1 \\
y^{(n)}(a)=1
\end{array}\right.
$$

where $\frac{y}{\varphi} \in A C^{n}([a, T], \mathbb{R})$, and φ are binary continuous functions. Here, $A C([a, T], \mathbb{R})$ is Banach space, which contains all absolutely continuous functions from $[a, T]$ into \mathbb{R}, provided with the usual maximum norm. $A C^{n}([a, T], \mathbb{R})=\{x:[a, T] \rightarrow$

[^0]: ${ }^{\dagger}$ The corresponding author.
 Email address: ChunshuoLi@stu.hebtu.edu.cn (C. Li), qll71125@163.com (Q. Li), zhangqing163163@163.com (Q. Zhang)
 ${ }^{1}$ Hebei Mathematics Research Center, Hebei Center for Applied Mathematics, School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
 *The authors were supported by the National Natural Foundation of China (Grant No. 11971145) and the Innovation Fund of School of Mathematical Sciences, Hebei Normal University (Grant No. xycxzzss002).

