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Abstract For a class of Lotka-Volterra competitive systems including both
diffusion and advection, a global bifurcation result of positive steady states
is established via a bifurcation approach. Also, the phenomenon of multiple
positive steady states is discussed.
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1. Introduction

Over the past several decades, the Crandall-Rabinowitz local bifurcation theorem [4]
and the global bifurcation theorem [24] have been widely utilized to understand the
solution set of nonlinear equations and to reveal critical roles played by physical or
biological parameters (see, e.g., [5,17] for a class of nonlocal elliptic equations, [1,13,
19, 33, 34] for the two-species reaction-diffusion competition models and [18, 28, 31]
for the predator-prey-taxis models). For more investigations, we refer the interested
readers to [16,20,21,29,30,35,39] (to mention but a few).

In this paper, we are mainly interested in the following general competitive
parabolic system including both diffusion and advection

ut = L1u+ u[r1(x)− u− bv], x ∈ Ω, t > 0,

vt = L2v + v[r2(x)− cu− v], x ∈ Ω, t > 0,

B1u = B2v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, 6≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, 6≡ 0, x ∈ Ω,

(1.1)

where Ω is a bounded and smooth domain in RN with 1 6 N ∈ Z, u(x, t) and
v(x, t) represent the population density of two competing species at location x ∈ Ω
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and time t > 0, respectively, ri(x) (i = 1, 2) is a bounded and positive function
accounting for the intrinsic growth rate, and the positive constants b and c measure
the inter-specific competition intensities (note that the intra-specific competition
coefficients have been normalized by 1). The linear differential operator Li is defined
by

Liw := div
(
di∇w − αiw∇Pi(x)

)
, i = 1, 2, (1.2)

with di > 0 denoting the rate of random diffusion, Pi(x) ∈ C1(Ω) specifying the
advective direction and αi ∈ R measuring the advection speed. The boundary
operator Bi is defined by

Biw = di
∂w

∂ν
− αiw

∂Pi
∂ν

= 0, i = 1, 2, (1.3)

where ν denotes the outward unit normal vector on the boundary ∂Ω. The no-flux
boundary conditions imposed in (1.3) mean that no individuals can cross over the
boundary of the habitat, i.e., the environment is closed.

Recently, system (1.1)-(1.3) has been systematically investigated by Zhou et al.,
[37,38], where the competition coefficients b and c are chosen as bifurcation/variable
parameters, and the global dynamics is determined in a certain range of b and c on
the b-c plane. Specifically, the authors first gave a clear picture of the local stability
around the two semi-trivial steady states in terms of critical competition coefficients
by the principal eigenvalue theory, then established an important estimate on the
linear stability of any positive steady state via an analytic argument (see also a
similar result by Guo, He and Ni [9]), and finally obtained the global dynamics
in a certain range of b and c by appealing to the theory of monotone dynamical
systems [10,11,14]. The main result suggests that either one of the two semi-trivial
steady state is globally asymptotically stable (competitive exclusion) or there is a
unique positive steady state which is globally asymptotically stable (coexistence),
depending on the competition intensities (see details in [37, Theorems 4 and 5]).

To some extent, the works [37, 38] can be seen as a study on the parameter
region of b and c where the global dynamics of system (1.1)-(1.3) can be completely
determined. In the current paper, as a further development of [37, 38], we pursue
further to understand the complicated dynamics of system (1.1)-(1.3), especially the
structure of positive steady states. To this end, we primarily employ the bifurcation
approach to present a global result on the structure of positive steady states.

Here, we mention several bifurcation results by considering some special cases
or variants of system (1.1)-(1.3). For example, system (1.1)-(1.3) with d1 = d2 = 1,
α1 = α2 = 0, r1 = r2 = a > 0 and b, c > 1 (the strong competition case) and
with zero Dirichlet boundary conditions (as well as Neumann and Robin boundary
conditions) have been investigated by Gui and Lou [8], where the existence and
multiplicity of positive steady states are carefully examined by both bifurcation
approach and degree method. A spatially one-dimensional case of system (1.1)-(1.3)
together with Danckwerts boundary conditions, modeling the competition between
two aquatic species in a free-flow environment, was studied by Wang, Tian, and
Nie [32], where among other things, a picture on the structure of positive steady
states is given by bifurcation approach. Moreover, Cantrell et al., [3] investigated
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