Extremal Functions for an Improved Trudinger-Moser Inequality Involving L^p -Norm in \mathbb{R}^n

YANG Liu^{1,3} and LI Xiaomeng^{2,3,*}

¹ College of Education, Huaibei Institute of Technology, Huaibei 235000, China.

² School of Mathematics and Big Data, Chaohu University, Hefei 230000, China.

³ School of Mathematical Science, Huaibei Normal University, Huaibei 235000, China.

Received 27 December 2021; Accepted 11 May 2023

Abstract. Let $W^{1,n}(\mathbb{R}^n)$ be the standard Sobolev space. For any $\tau > 0$ and p > n > 2, we denote

$$\lambda_{n,p} = \inf_{u \in W^{1,n}(\mathbb{R}^n), u \neq 0} \frac{\int_{\mathbb{R}^n} (|\nabla u|^n + \tau |u|^n) dx}{\left(\int_{\mathbb{R}^n} |u|^p dx\right)^{\frac{n}{p}}}.$$

Define a norm in $W^{1,n}(\mathbb{R}^n)$ by

$$\|u\|_{n,p} = \left(\int_{\mathbb{R}^n} \left(|\nabla u|^n + \tau |u|^n\right) \mathrm{d}x - \alpha \left(\int_{\mathbb{R}^n} |u|^p \mathrm{d}x\right)^{\frac{n}{p}}\right)^{\frac{1}{n}},$$

where $0 \le \alpha < \lambda_{n,p}$. Using a rearrangement argument and blow-up analysis, we will prove

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \|u\|_{n,p} \le 1} \int_{\mathbb{R}^n} \left(e^{\alpha_n |u|^{\frac{n}{n-1}}} - \sum_{j=0}^{n-1} \frac{\alpha_n^j |u|^{\frac{jn}{n-1}}}{j!} \right) \mathrm{d}x$$

can be attained by some function $u_0 \in W^{1,n}(\mathbb{R}^n) \cap C^1(\mathbb{R}^n)$ with $||u_0||_{n,p} = 1$, here $\alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$ and ω_{n-1} is the measure of the unit sphere in \mathbb{R}^n .

AMS Subject Classifications: 46E35

Chinese Library Classifications: O175.29

Key Words: Trudinger-Moser inequality; extremal function; blow-up analysis.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* yangliu_math@163.com (L. Yang), xmlimath@163.com (X. Li)

1 Introduction

Let $n \ge 2$, and denote $\alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$, where ω_{n-1} is the area of the unit sphere in \mathbb{R}^n . The famous Trudinger-Moser inequality [1–5] states that, for a bounded domain $\Omega \subset \mathbb{R}^n$ and $0 < \gamma \le \alpha_n$,

$$\sup_{u\in W_0^{1,n}(\Omega), \int_{\Omega}|\nabla u|^n dx \le 1} \int_{\Omega} e^{\gamma|u|\frac{n}{n-1}} dx < \infty.$$
(1.1)

If $\gamma > \alpha_n$, the integrals in (1.1) are still finite, but the supremum is infinity.

One of the interesting questions about Trudinger-Moser inequalities is whether extremal function exists or not. The first result in this direction was obtained by Carleson-Chang [6] in the case that Ω is a unit disk in \mathbb{R}^n , then by Struwe [7] when Ω is a close to the ball in the sense of measure, by Flucher [8] for any bounded smooth domain in \mathbb{R}^2 , and by Lin [9] to an arbitrary domain in \mathbb{R}^n .

The Trudinger-Moser inequality (1.1) was extended by Cao [10], Panda [11], do Ó [12], Ruf [13], and Li-Ruf [14] to the entire Euclidean space \mathbb{R}^n ($n \ge 2$). Precisely, for any $\gamma \le \alpha_n$,

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \int_{\mathbb{R}^n} (|\nabla u|^n + |u|^n) dx \le 1} \int_{\mathbb{R}^n} \left(e^{\gamma |u|^{\frac{n}{n-1}}} - \sum_{j=0}^{n-2} \frac{\gamma^j |u|^{\frac{nj}{n-1}}}{j!} \right) dx < \infty.$$
(1.2)

Adimurthi-Yang [15] generalized (1.2) to a singular version. That is, for all $\tau > 0$, $n \ge 2$, $0 < \beta < 1$ and $0 < \eta \le 1 - \beta$, one has

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \int_{\mathbb{R}^n} (|\nabla u|^n + \tau |u|^n) dx \le 1} \int_{\mathbb{R}^n} \frac{e^{\alpha_n \eta |u|^{\frac{n}{n-1}}} - \sum_{j=0}^{n-2} \frac{\alpha_n^j \eta^j |u|^{\frac{jn}{n-1}}}{j!}}{|x|^{n\beta}} dx < \infty.$$
(1.3)

Obviously, for all $\tau \in (0, +\infty)$, the norms $(\int_{\mathbb{R}^n} (|\nabla u|^n + \tau |u|^n) dx)^{\frac{1}{n}}$ are equivalent to the standard norms on $W^{1,n}(\mathbb{R}^n)$. Then Li-Yang [16] obtained the existence of extremal functions for (1.3) using blow-up analysis. Later, (1.3) was extended by Li [17] to the following modified form. Let $p > n \ge 2$ and

$$\lambda_{n,p} = \inf_{u \in W^{1,n}(\mathbb{R}^n), u \neq 0} \frac{\int_{\mathbb{R}^n} (|\nabla u|^n + \tau |u|^n) \mathrm{d}x}{\left(\int_{\mathbb{R}^n} |u|^p \mathrm{d}x\right)^{n/p}}.$$
(1.4)

For $0 < \beta < 1$ and $0 \le \alpha < \lambda_{n,p}$, the supremum

$$\sup_{u \in W^{1,n}(\mathbb{R}^n), \|u\|_{n,p} \le 1} \int_{\mathbb{R}^n} \frac{e^{\alpha_n (1-\beta)|u|^{\frac{n}{n-1}}} - \sum_{j=0}^{n-2} \frac{\alpha_n^j (1-\beta)^j |u|^{\frac{m}{n-1}}}{j!}}{|x|^{n\beta}} dx$$
(1.5)