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Abstract. In this paper, we explore a new approach to design and analyze numerical

schemes for backward stochastic differential equations (BSDEs). By the nonlinear
Feynman-Kac formula, we reformulate the BSDE into a pair of reference ordinary

differential equations (ODEs), which can be directly discretized by many standard

ODE solvers, yielding the corresponding numerical schemes for BSDEs. In particular,
by applying strong stability preserving (SSP) time discretizations to the reference

ODEs, we can propose new SSP multistep schemes for BSDEs. Theoretical analyses
are rigorously performed to prove the consistency, stability and convergency of the

proposed SSP multistep schemes. Numerical experiments are further carried out to

verify our theoretical results and the capacity of the proposed SSP multistep schemes
for solving complex associated problems.
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1. Introduction

In this work, we are concerned with numerical solutions of the Markovian backward

stochastic differential equations (BSDEs) on (Ω,F ,F, P )

Yt = ξ +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ], (1.1)

where Xt = X0 + σWt, T > 0 is the deterministic terminal time, (Ω,F ,F,P) is a fil-

tered complete probability space with F = (Ft)0≤t≤T being the natural filtration of the
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standard q-dimensional Brownian motion W = (Wt)0≤t≤T . The matrix σ ∈ R
d×q is the

diffusion coefficient, f : [0, T ]×R
d×R

p×R
p×q → R

p and ξ = ϕ(XT ) with ϕ : Rd → R
p

are the generator and the terminal condition of the BSDE, respectively. The stochastic

integral with respect to Ws is of the Itô type. The pair of processes (Y,Z) is called

an L2-adapted solution of the BSDE (1.1) if it is Ft-adapted, square integrable, and

satisfies (1.1).

In 1990, Pardoux and Peng [28] first proved the existence and uniqueness of the

solutions of nonlinear BSDEs. In 1991, Peng [30] further put forward the nonlinear

Feynman-Kac formula, which established a deep connection between the BSDE (1.1)

and the parabolic partial differential equation (PDE), that is, under some regularity

conditions, the solution (Y,Z) of (1.1) can be expressed as

Yt = u(t,Xt), Zt = ∇xu(t,Xt), t ∈ [0, T ), (1.2)

where u : [0, T ] ×R
d → R

p is the classical solution to the following PDEs:



∂t +
1

2

d
∑

i,j=1

q
∑

l=1

σilσjl∂
2
xixj



u(t, x)

+ f
(

t, x, u(t, x),∇xu(t, x)σ
)

= 0, (t, x) ∈ [0, T ) × R
d (1.3)

with the terminal condition u(T, x) = ϕ(x) for x ∈ R
d. The representation (1.2) is

important in applications, which allows us to design numerical methods for parabolic

PDEs (1.3) by solving the associated BSDEs (1.1) and vice versa.

The analytic solutions to BSDEs is usually unavailable, and thus numerical methods

for solving BSDEs are highly desired. In recent years, great efforts have been made for

designing efficient numerical schemes for BSDEs. There are two main type of schemes:

the first type is based on numerical solution of a parabolic PDE which is related to

the BSDE [9, 26, 27], and the second type of schemes focus on discretizing BSDEs

directly [1–3, 8, 18, 25, 31, 34, 41]. For the second type of schemes, popular temporal

discretizations include Euler-type methods [11, 12, 40], θ-schemes [41, 44], Runge-

Kutta schemes [6], and multistep schemes [5,42,45,46], etc.

Most of the aforementioned temporal discretizations have their prototypical coun-

terparts designed for ordinary differential equations (ODEs). However, it is still a non-

trivial task to extend the ODEs’ numerical methods to the ones for BSDEs. Actually,

in conventional approaches, e.g., [34,41,42,44,45], etc, numerical approximations to

the solutions (Y,Z) are achieved by discretizing a pair of reference equations deduced

from (1.1), of which the typical form are that

Et[Ys] = Et[ξ] +

∫ T

s
Et[f(r,Xr, Yr, Zr)]dr, (1.4)

∫ s

t
Et[Zr]dr = Et[Ys∆W⊤

t,s] +

∫ s

t
Et[f(r,Xr, Yr, Zr)∆W⊤

t,r]dr, (1.5)


