
Numer. Math. Theor. Meth. Appl. Vol. 16, No. 4, pp. 883-913

doi: 10.4208/nmtma.OA-2023-0097 November 2023

HRW: Hybrid Residual and Weak Form Loss for

Solving Elliptic Interface Problems with Neural

Network

Muzhou Hou1, Yinghao Chen1,2, Shen Cao1, Yuntian Chen2 and
Jinyong Ying1,*

1 School of Mathematics and Statistics, HNP-LAMA, Central South University,
Changsha, Hunan 410083, China
2 College of Engineering, Eastern Institute for Advanced Study, Ningbo, 315201,

China

Received 24 August 2023; Accepted (in revised version) 1 September 2023

Abstract. Deep learning techniques for solving elliptic interface problems have gain-

ed significant attentions. In this paper, we introduce a hybrid residual and weak
form (HRW) loss aimed at mitigating the challenge of model training. HRW utilizes

the functions residual loss and Ritz method in an adversary-system, which enhances

the probability of jumping out of the local optimum even when the loss landscape
comprises multiple soft constraints (regularization terms), thus improving model’s

capability and robustness. For the problem with interface conditions, unlike existing
methods that use the domain decomposition, we design a Pre-activated ResNet of

ResNet (PRoR) network structure employing a single network to feed both coordi-

nates and corresponding subdomain indicators, thus reduces the number of param-
eters. The effectiveness and improvements of the PRoR with HRW are verified on

two-dimensional interface problems with regular or irregular interfaces. We then

apply the PRoR with HRW to solve the size-modified Poisson-Boltzmann equation,
an improved dielectric continuum model for predicting the electrostatic potentials in

an ionic solvent by considering the steric effects. Our findings demonstrate that the
PRoR with HRW accurately approximates solvation free-energies of three proteins

with irregular interfaces, showing the competitive results compared to the ones ob-

tained using the finite element method.
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1. Introduction

As one application, the deep neural networks for solving partial differential equa-

tions (PDEs) have received extensive attentions recently for their simplicity in construc-

tion and success in various applications [18]. Dating back to the early 1990s, Lagaris et

al. [13] proposed a single layer feed-forward neural network, in which the governing

equations and the boundary conditions are taken as loss functions. Then Isaac and

Aristidis [14] proposed a decomposition method to decompose the trial solution into

the sum of the neural network and the initial or boundary condition to strictly meet

the physical constraints. Recently, extending the single layer neural network in [13]

to multiple layers and adding the difference of observation samples into the loss func-

tion, Karniadakis proposed the physical information neural network (PINN) [11, 16],

and gave a series of improvements to solve the forward and inverse problems [27]. E

et al. [3] extended the Ritz method to the field of deep learning, and used the varia-

tional form to obtain the weak solution of the Poisson equation, convergence analysis

of which can be found in [2]. Wang et al. [19,20] incorporated scientific theory on the

basis of controlling equation constraints to avoid unreasonable predictions in fluid sim-

ulation and subsurface geological inversion. The above methods are all soft constraints

in essence, Chen et al. [1] proposed Hard constraint projection (HCP) to integrate the

discrete form of the governing equation into the activation function of the output layer

in neural networks. Through this approach, the predicted results of the neural network

adhere rigorously to the physical constraints by being projected onto the constrained

hyperplane. As for the non-symmetric PDEs with no energy functional available to

characterize the weak solution, the deep Galerkin method [17] utilizes the integral

form of the residual as a loss function, effectively reducing the derivative order and

providing a viable means to resolve high-order problems.

All of these mentioned methods were proposed for PDEs without interface condi-

tions. Considering the elliptic interface problem, Wang et al. [21] used two shallow

neural networks to approximate the boundary conditions and the differential equa-

tions for solving elliptic interface problems with high-contrast coefficients. Based on

the domain decomposition idea, some improved deep learning methods [5,7,23] were

proposed using different formulations of the loss functions. To approximate the solu-

tion to the given interface problem, the present research proposes utilizing two or more

neural networks, in contrast to a single network, to simulate the solution within each

subdomain. Subsequently, the networks are interlinked by enforcing the interface con-

ditions from different subdomains to derive the final solution. To be able to better cap-

ture the solution in each subdomain, the deep learning methods based on the domain

decomposition idea have acceptable solution accuracy (about 10−2). Of course, using

better network structure [25], appropriately determining the hyper-parameters such as

the coefficients of the various terms in the loss function [22] and using the adaptive

technique [4] would enhance the solution accuracy. To further improve the accuracy,

Lai et al. [9] augmented one coordinate variable into the input vector, and used only

one network with one hidden layer to solve the elliptic interface problem with discon-


