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Abstract. We present an innovative interpretation of Kalman filter (KF) combining
the ideas of Schwarz domain decomposition (DD) and parallel in time (PinT) ap-

proaches. Thereafter we call it DD-KF. In contrast to standard DD approaches which
are already incorporated in KF and other state estimation models, implementing

a straightforward data parallelism inside the loop over time, DD-KF ab-initio par-

titions the whole model, including filter equations and dynamic model along both
space and time directions/steps. As a consequence, we get local KFs reproducing the

original filter at smaller dimensions on local domains. Also, sub problems could be

solved in parallel. In order to enforce the matching of local solutions on overlapping
regions, and then to achieve the same global solution of KF, local KFs are slightly

modified by adding a correction term keeping track of contributions of adjacent sub-
domains to overlapping regions. Such a correction term balances localization errors

along overlapping regions, acting as a regularization constraint on local solutions.

Furthermore, such a localization excludes remote observations from each analyzed
location improving the conditioning of the error covariance matrices. As dynamic

model we consider shallow water equations which can be regarded a consistent tool

to get a proof of concept of the reliability assessment of DD-KF in monitoring and
forecasting of weather systems and ocean currents.
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1. Introduction

In the present paper we focus on Kalman filter which is one of the most important

and common state estimation algorithms solving data assimilation (DA) problems [24,

25]. Besides its employment in validation of mathematical models used in meteorology,

climatology, geophysics, geology and hydrology [50], it has become a main component

in visual tracking of moving object in image processing or autonomous vehicles tracking

with GPS in satellite navigation systems, or even in applications of non physical systems
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such as financial markets [3, 20, 26, 50]. Its main strength is the simple derivation

of the algorithm using the filter recursive property: measurements/observations are

processed step by step as they arrive allowing to correct the given data. A recent

review of KF and its applications is given in [28].

KF time complexity requires very large computational burden in concrete scenarios

[33,46,48]. Hence, several variants/approximation have been proposed to reduce the

computational complexity and to allow KF deployment in real time. These are designed

on the basis of a reduction in the order of the model [16,18,42,49], or they are based on

ensemble Kalman filter (EnKF) which approximates KF by representing the distribution

of the state with an ensemble of draws from that distribution. A prediction of the error

at a future time is computed by integrating each ensemble state independently by the

model [15]. EnKF can be used for nonlinear dynamics settings and they are more

suited to large scale real world problems than the KF, so it is more viable for use within

operational DA [38]. Nevertheless, EnKF methods are hindered by a reduction in the

size of the ensemble due to the computational requirements of maintaining a large

ensemble [1, 17]. In applications, most efforts to deal with the related problems of

computational effort and sampling error in ensemble estimation have focused on using

variations on the concept of localization [51].

A typical approach for solving computationally intensive problems – which is ori-

ented to exploit parallel computing – is based on Schwarz domain decomposition (DD)

techniques. DD methods are well-established strategies that has been used with great

success for a wide variety of problems. Review papers, both for mathematical and com-

putational analysis are for instance [34, 40, 43, 44]. Concerning DA problems, DD is

usually performed by discretizing the objective function and the model to build a dis-

crete Lagrangian [9]. At the heart of these so called all-at-once approaches, lies so-

lution of a very large linear system (the Karush-Kuhn-Tucker (KKT) system) which is

decomposed according to the discretization grid. A common drawback of such parallel

algorithms is their limited scalability, due to the fact that parallelism is achieved adapt-

ing the most computationally demanding tasks for parallel execution. Concerning KF

this approach leads to the straightforward data parallelism inside the loop over time-

steps. Amdhal’s law clearly applied in these situations because the computational cost

of the components that are not parallelized – or in case of KF a data synchronization

at each step – provides a lower bound on the execution time of the parallel algorithm.

More generally if a fraction r of our serial program remains unparallelized, then Am-

dahl’s law says we can not get a speedup better than 1/r. Thus even if r is quite small,

say 1/100, and we have a system with thousands of cores, we cannot get a speedup

better than 100.

Here we present the mathematical framework of an innovative approach which

turns to be appropriate for using state estimation problems described by KF and gov-

erned by a dynamic model such as partial differential equations (PDEs). This approach

relies on the ideas of Schwarz DD [44] and parallel in time approaches [30] fully re-

vised in a linear algebra setting. Schwarz methods use as boundary conditions of the lo-

cal PDE-model the approximation of the numerical solution computed on the interfaces


