Kirchhoff-Type Problem with Mixed Boundary Condition in a Variable Exponent Sobolev Space

Junichi Aramaki*

Division of Science, Tokyo Denki University, Hatoyama-machi, Saitama, 350-0394, Japan.

Received 31 March 2023; Accepted 4 August 2023

Abstract. In this paper, we consider a mixed boundary value problem for the stationary Kirchhoff-type equation containing $p(\cdot)$ -Laplacian. More precisely, we are concerned with the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least one, two or infinitely many non-trivial weak solutions according to hypotheses on given functions.

AMS subject classifications: 35H30, 35D05, 35J60, 35J70

Key words: Kirchhoff-type problem, mixed boundary value problem, $p(\cdot)$ -Laplacian type equation, weak solutions.

1 Introduction

In this paper, we consider the following Kirchhoff-type problem:

$$\begin{cases} -M(\Phi(u))\operatorname{div}\left[a(x,\nabla u(x))\right] = f(x,u(x)) & \text{in } \Omega, \\ u(x) = 0 & \text{on } \Gamma_1, \\ M(\Phi(u))n(x) \cdot a(x,\nabla u(x)) = g(x,u(x)) & \text{on } \Gamma_2. \end{cases}$$
(1.1)

^{*}Corresponding author. *Email address:* aramaki@hctv.ne.jp(J. Aramaki)

Here Ω is a bounded domain of \mathbb{R}^N ($N \ge 2$) with the Lipschitz-continuous ($C^{0,1}$ for short) boundary Γ such that:

$$\Gamma_1$$
 and Γ_2 are disjoint open subsets of Γ , $\overline{\Gamma_1} \cup \overline{\Gamma_2} = \Gamma$, $\Gamma_1 \neq \emptyset$, (1.2)

and the vector field *n* denotes the unit, outer, normal vector to Γ . The function $a(x,\xi)$ is a Carathéodory function on $\Omega \times \mathbb{R}^N$ satisfying some structure conditions associated with an anisotropic exponent function p(x). Then the operator $u \mapsto \text{div}[a(x, \nabla u(x))]$ is more general than the $p(\cdot)$ -Laplacian

$$\Delta_{p(x)}u(x) = \operatorname{div}\left[|\boldsymbol{\nabla} u(x)|^{p(x)-2}\boldsymbol{\nabla} u(x)\right]$$

and the mean curvature operator

div
$$[(1+|\nabla u(x)|^2)^{(p(x)-2)/2}\nabla u(x)].$$

This generality brings about difficulties and requires some conditions. The function M = M(s) defined in $[0,\infty)$ satisfies the following condition (M).

(M) $M: [0,\infty) \to [0,\infty)$ is a continuous and monotone increasing (i.e., non-decreasing) function, and there exist $0 < m_0 \le m_1 < \infty$ and $l \ge 1$ such that

$$m_0 s^{l-1} \le M(s) \le m_1 s^{l-1}$$
 for all $s \ge 0$.

Furthermore, the function $\Phi(u)$ is defined by

$$\Phi(u) = \int_{\Omega} A(x, \nabla u(x)) dx, \qquad (1.3)$$

where $A(x,\xi)$ is a function on $\Omega \times \mathbb{R}^N$ satisfying $a(x,\xi) = \nabla_{\xi}A(x,\xi)$. Thus we impose the mixed boundary conditions, that is, the Dirichlet condition on Γ_1 and the Steklov condition on Γ_2 . The given data $f: \Omega \times \mathbb{R} \to \mathbb{R}$ and $g: \Gamma_2 \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions. The first equation in (1.1) is non-local in the sense that the equation is not a pointwise identity according to the term $M(\Phi(u))$.

The study of differential equations with $p(\cdot)$ -growth conditions is a very interesting topic recently. Studying such problem stimulated its application in mathematical physics, in particular, in elastic mechanics [31], in electrorheological fluids [9,17,22,24].

For physical motivation to the problem (1.1), we consider the case where $\Gamma = \Gamma_1$ and p(x) = 2. Then the equation

$$M\left(\|\boldsymbol{\nabla}\boldsymbol{u}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}\right)\Delta\boldsymbol{u}(\boldsymbol{x}) = f\left(\boldsymbol{x},\boldsymbol{u}(\boldsymbol{x})\right)$$
(1.4)

is the Kirchhoff equation which arises in nonlinear vibration, namely