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Abstract. Capacity constrained optimal transport is a variant of optimal transport,
which adds extra constraints on the set of feasible couplings in the original optimal
transport problem to limit the mass transported between each pair of source and sink.
Based on this setting, constrained optimal transport has numerous applications, e.g.,
finance, network flow. However, due to the large number of constraints in this prob-
lem, existing algorithms are both time-consuming and space-consuming. In this pa-
per, inspired by entropic regularization for the classical optimal transport problem,
we introduce a novel regularization term for capacity constrained optimal transport.
The regularized problem naturally satisfies the capacity constraints and consequently
makes it possible to analyze the duality. Unlike the matrix-vector multiplication in
the alternate iteration scheme for solving classical optimal transport, in our algorithm,
each alternate iteration step is to solve several single-variable equations. Fortunately,
we find that each of these equations corresponds to a single-variable monotonic func-
tion, and we convert solving these equations into finding the unique zero point of
each single-variable monotonic function with Newton’s method. Theoretical analysis
further provides a convergence guarantee to our algorithm. Extensive numerical ex-
periments demonstrate that our proposed method has a significant advantage in terms
of accuracy, efficiency, and memory consumption compared with existing methods.
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1 Introduction

In this work, we present a novel time-efficient and space-saving method, to solve the dis-
crete capacity constrained optimal transport (COT) problem [6], which is a discretization
of continuous COT [29] and defined as

min
γ∈R

N×M
+

〈C,γ〉,

s.t. θ≤γ≤η, γ1=u, γT1=v.
(1.1)

Here, η=[ηij]∈R
N×M
+ and θ=[θij]∈R

N×M
+ are the given capacity upper and lower bound

matrices, respectively. u and v are marginal distributions satisfying ‖u‖1 = ‖v‖1 = 1.
γ=[γij]N×M is the transport plan, whose element γij denotes the mass transported from
position xi to yj, and is upper and lower bounded by ηij and θij in the COT problem,
i.e., θij ≤ γij ≤ ηij. A≤ B denotes that every element aij in matrix A is not larger than
corresponding bij in matrix B. Note that when θij = 0 and ηij = 1 for any i= 1,.. . ,N and
j = 1,.. .,M, the discretized COT problem (1.1) is exactly the classical optimal transport
problem, in which C=[cij]∈R

N×M
+ denotes the cost matrix.†

Considering the capacity upper and lower bounds in the capacity constrained optimal
transport problem, there are a large number of applications in various fields. For network
flow [19], COT can be formulated as a minimum cost maximum flow problem [4, 18, 47],
in which each edge has a capacity. For asset pricing and hedging in finance [1, 14, 44],
the duality of martingale constrained optimal transport is closely associated with the
fundamental theorem of asset pricing.

Optimal transport theory [22, 27, 28] has been successfully applied in different fields
[8, 9, 17, 21, 30, 38, 40, 41, 50, 52]. Consequently, there are numerous algorithms for solv-
ing classical optimal transport problem proposed in different perspectives, such as linear
programming methods [51], primal-dual algorithms [23], solving Monge-Ampère equa-
tion [5,13,26,39], proximal block coordinate descent methods [24], reduction and approx-
imation techiniques for high-dimensional distributions [31,35,36,53], Sinkhorn algorithm
and its variants [2, 3, 12, 32–34, 42], etc. However, the large number of constraints added
in the COT problem brings out new challenges for computation, and the methods men-
tioned above can hardly be applied directly to the COT problem. A straightforward
solution is to formulate the COT problem as a min-cost-max-flow problem on a com-
plete bipartite graph and then solve it with the network flow algorithms, which incurs
cubic time complexity according to [48, 49]. In addition, as pointed out in [15, 34], so-
lutions obtained by network flow algorithms are indifferentiable. There are also several
algorithms [6, 11, 54] designed specifically for solving COT problems, among which iter-
ative Bregman projection (IBP) proposed in [6] is the most common method. The main
idea of IBP is to project the solution onto part of the constraint set alternately based on

†In this paper, our discussion is general for any N and M. For the sake of simplicity, we assume N= M in
the rest of the paper.


