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Abstract. In this paper, we develop an asymptotic expansion-regularization (AER)
method for inverse source problems in two-dimensional nonlinear and nonstation-
ary singularly perturbed partial differential equations (PDEs). The key idea of this
approach is the use of the asymptotic-expansion theory, which allows us to determine
the conditions for the existence and uniqueness of a solution to a given PDE with
a sharp transition layer. As a by-product, we derive a simpler link equation between
the source function and first-order asymptotic approximation of the measurable quan-
tities, and based on that equation we propose an efficient inversion algorithm, AER,
for inverse source problems. We prove that this simplification will not decrease the ac-
curacy of the inversion result, especially for inverse problems with noisy data. Various
numerical examples are provided to demonstrate the efficiency of our new approach.
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1 Introduction

In this paper, we develop an asymptotic expansion-regularization method for two-di-
mensional inverse source problems which arise from time-dependent singularly per-
turbed partial differential equations (PDEs). To illustrate our ideas, we take the following
inverse problem as an example:
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(IP): Given noisy data {uδ(x,y,t0),uδ
x(x,y,t0),uδ

y(x,y,t0)} of {u(x,y,t), ux(x,y,t), uy(x,y,t)}
at the n·m location points {xi,yj}n,m

i,j=0 and at the time point t0, find the source function

f (x,y) such that (u, f ) satisfies the dimensionless nonlinear autowave model
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+ f (x,y), x∈R, y∈ (−a,a), t∈ (0,T],

u(x,y,t,µ)=u(x+L,y,t,µ), x∈R, y∈ [−a,a], t∈ [0,T]≡T̄ ,

u(x,−a,t,µ)=u−a(x), u(x,a,t,µ)=ua(x), x∈R, t∈ [0,T],

u(x,y,0,µ)=uinit(x,y,µ), x∈R, y∈ [−a,a],

(1.1)

where u(x,y,t) represents the temperature or oil saturation, µ≪1 denotes kinematic vis-
cosity, the positive constant k is the medium anisotropy coefficient, and f (x,y) is the
source function. We assume that the function f (x,y) is L-periodic in the variable x and
sufficiently smooth in the region (x,y) : R×Ω̄ (Ω ≡ (−a,a)), that the functions u−a(x),
ua(x) are L-periodic and sufficiently smooth in x∈R, and that uinit(x,y,µ) is a sufficiently
smooth function in (x,y) :R×Ω and L-periodic in x, satisfying

uinit(x,−a,µ)=u−a(x), uinit(x,a,µ)=ua(x).

In this paper, we focus on the speed, location, and width of the border between two
regions – the region with a small dimensionless value u and the region with its high
value. The domain of the function describing the moving front contains a subdomain in
which the function has a large gradient. Interest in front-type solutions is associated with
combustion problems [23] or nonlinear acoustic waves [37].

Note that the inverse source problem (IP) is ill-posed (see [19]), we should therefore
employ the regularization methods to obtain a meaningful approximate source function.
Within the framework of Tikhonov regularization, the (IP) can be converted to the fol-
lowing PDE-constrained optimization problem:

min
f

n

∑
i=0

m

∑
j=0

{

[

u(xi,yj,t0)−uδ(xi,yj,t0)
]2
+

[

∂u

∂x
(xi,yj,t0)−

∂uδ

∂x
(xi,yj,t0)

]2

+

[

∂u

∂y
(xi,yj,t0)−

∂uδ

∂y
(xi,yj,t0)

]2
}

+εR( f ), (1.2)

where u solves the nonlinear PDE (1.1) with a given f , R( f ) denotes the regularization
term, and ε>0 is the regularization parameter.

Although the conventional formulation (1.2) for (IP) is straightforward, the numerical
realization is difficult in many applications for the following three reasons:

(1) The regularization term R( f ) reflects the a priori information about the source func-
tion, which is hard to obtain in practice.


