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Abstract. In this paper, we develop an asymptotic expansion-regularization (AER)
method for inverse source problems in two-dimensional nonlinear and nonstation-
ary singularly perturbed partial differential equations (PDEs). The key idea of this
approach is the use of the asymptotic-expansion theory, which allows us to determine
the conditions for the existence and uniqueness of a solution to a given PDE with
a sharp transition layer. As a by-product, we derive a simpler link equation between
the source function and first-order asymptotic approximation of the measurable quan-
tities, and based on that equation we propose an efficient inversion algorithm, AER,
for inverse source problems. We prove that this simplification will not decrease the ac-
curacy of the inversion result, especially for inverse problems with noisy data. Various
numerical examples are provided to demonstrate the efficiency of our new approach.
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1 Introduction

In this paper, we develop an asymptotic expansion-regularization method for two-di-
mensional inverse source problems which arise from time-dependent singularly per-
turbed partial differential equations (PDEs). To illustrate our ideas, we take the following
inverse problem as an example:
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(IP): Given noisy data {u°(x,y,to),u ‘5(x y,to),u ‘5( Yoto) }of {u(x,y,t), ux(x,y,t), uy,(x,y,t)}
at the n-m location points {xz,y]} —o and at the time point o, find the source function
f(x,y) such that (u, f) satisfies the d1mens1onless nonlinear autowave model

( ou Ju Jdu

phu— = =—u <k$+@> +f(xy), x€R, y€(—aa), te(0,T),
u(xy,tp)=u(x+Lytu), Y€R, ye[-aal, te[OTI=T, [y
u(x,—at,u)=u""(x), u(x,atu)=u(x), xeR, te[0,T],
\u(x/yzozﬂ) :uinit(x/y/,u)/ XGR, ye [—a,a],

where u(x,y,t) represents the temperature or oil saturation, 4 <1 denotes kinematic vis-
cosity, the positive constant k is the medium anisotropy coefficient, and f(x,y) is the
source function. We assume that the function f(x,y) is L-periodic in the variable x and
sufficiently smooth in the region (x,y) : RxQ (Q = (—a,a)), that the functions u~%(x),
u®(x) are L-periodic and sulfficiently smooth in x €R, and that u;,;(x,y, ) is a sufficiently
smooth function in (x,y) :R x Q) and L-periodic in x, satisfying

Uinit (X, —a,pu) =u~"(x),  ipir(x,a,1) =u"(x).

In this paper, we focus on the speed, location, and width of the border between two
regions — the region with a small dimensionless value u and the region with its high
value. The domain of the function describing the moving front contains a subdomain in
which the function has a large gradient. Interest in front-type solutions is associated with
combustion problems [23] or nonlinear acoustic waves [37].

Note that the inverse source problem (IP) is ill-posed (see [19]), we should therefore
employ the regularization methods to obtain a meaningful approximate source function.
Within the framework of Tikhonov regularization, the (IP) can be converted to the fol-
lowing PDE-constrained optimization problem:

5 2

2 [du ou
man(:)Z{ xl,y],to (xi,y]-,to)] + {a(xi,yj,to)—g(xi,yj,to)
1=Uj

ou o ou’ o 2 R 1o
+[@<xuy,, )= 5 (5 o>] LeR(f), 12)

where u solves the nonlinear PDE (1.1) with a given f, R(f) denotes the regularization
term, and € >0 is the regularization parameter.

Although the conventional formulation (1.2) for (IP) is straightforward, the numerical
realization is difficult in many applications for the following three reasons:

(1) The regularization term R (f) reflects the a priori information about the source func-
tion, which is hard to obtain in practice.



