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Abstract. We establish a uniform error bound of an exponential wave integrator Fourier

pseudospectral (EWI-FP) method for the long-time dynamics of the nonlinear Schrö-

dinger equation with wave operator (NLSW), in which the strength of the nonlinearity

is characterized by ǫ2p with ǫ ∈ (0,1] a dimensionless parameter and p ∈ N+. When

0< ǫ≪ 1, the long-time dynamics of the problem is equivalent to that of the NLSW with

O (1)-nonlinearity and O (ǫ)-initial data. The NLSW is numerically solved by the EWI-

FP method which combines an exponential wave integrator for temporal discretization

with the Fourier pseudospectral method in space. We rigorously establish the uniform

H1-error bound of the EWI-FP method at O (hm−1 + ǫ2p−βτ2) up to the time at O (1/ǫβ )

with 0 ≤ β ≤ 2p, the mesh size h, time step τ and m ≥ 2 an integer depending on the

regularity of the exact solution. Finally, numerical results are provided to confirm our

error estimates of the EWI-FP method and show that the convergence rate is sharp.
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation with wave

operator on the torus Td (d = 1,2,3):

i∂tψ−α∂t tψ+∇
2ψ− ǫ2p|ψ|2pψ = 0, x ∈ Td , t > 0,

ψ(x, 0) =ψ0(x), ∂tψ(x, 0) =ψ1(x), x ∈ Td ,
(1.1)
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where ψ := ψ(x, t) is a complex-valued wave function with the spatial variable x and

time t, α = O (1) a positive constant, 0 < ǫ ≤ 1 a dimensionless parameter controlling

the strength of the nonlinearity, ∇2 = ∆ the d-dimensional Laplace operator, and p ∈ N+.

In addition, ψ0(x) = O (1) and ψ1(x) = O (1) are two given complex-valued functions

representing the initial wave and velocity, respectively. The solution of the NLSW with

weak nonlinearity (1.1) propagates waves in both space and time with wavelength at O (1)

and the wave speed in space is also at O (1). It is well known that the NLSW (1.1) conserves

the mass [1,2]

N (t) :=

∫

Td

|ψ(x, t)|2dx− 2α

∫

Td

Im
�
ψ(x, t)∂tψ(x, t)

�
dx≡ N (0), t ≥ 0,

and the energy

E(t) :=

∫

Td

�
α|∂tψ(x, t)|2 + |∇ψ(x, t)|2 +

ǫ2p

p+ 1
|ψ(x, t)|2p+2

�
dx≡ E(0), t ≥ 0,

where c and Im(c) denote the conjugate and imaginary part of c, respectively.

The NLSW arises from different physical fields including the nonrelativistic limit of the

Klein-Gordon equation [26,27,29], the Langmuir wave envelope approximation in plasma

[8,12], and the modulated planar pulse approximation of the sine-Gordon equation for light

bullets [5, 33]. In the past decades, the NLSW (1.1) with ǫ = 1 and 0 < α≪ 1 has been

widely studied analytically and numerically [1,2,8,26,27]. Along the analytical front, the

existence of the solution and the convergence rate to the nonlinear Schrödinger equation

(NLSE) have been investigated [8, 26, 27, 29]. In the numerical aspect, different efficient

numerical methods have been proposed and the conservative finite difference methods are

most popular [1, 10, 13, 19, 31, 34]. In particular, the exponential wave integrator sine

pseudospectral (EWI-SP) method has been proposed with optimal uniform error bounds

in time established rigorously [2]. For more details related to the numerical schemes, we

refer to [9,20,22,24,30,32,35] and references therein.

Moreover, rescaling the amplitude of the wave function ψ(x, t) by introducing a new

variable φ := φ(x, t) = ǫψ(x, t), the NLSW (1.1) can be reformulated as the following

NLSW with O (1)-nonlinearity and O (ǫ)-initial data:

i∂tφ −α∂t tφ +∇
2φ − |φ|2pφ = 0, x ∈ Td , t > 0,

φ(x, 0) = ǫψ0(x), ∂tφ(x, 0) = ǫψ1(x), x ∈ Td .
(1.2)

The long-time dynamics of the NLSW with O (ǫ2p)-nonlinearity and O (1)-initial data, i.e.

the NLSW (1.1), is equivalent to that of the NLSW with O (1)-nonlinearity and O (ǫ)-initial

data, i.e. the NLSW (1.2).

In recent years, long-time dynamics of dispersive partial differential equations (PDEs)

including the (nonlinear) Schrödinger equation, nonlinear Klein-Gordon equation and Di-

rac equation with weak nonlinearity or small potential are thoroughly studied in the liter-

ature [3,4,7,15–17]. Exponential wave integrators and time-splitting methods are widely


