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Abstract. Deep learning has achieved great success in solving partial differential

equations (PDEs), where the loss is often defined as an integral. The accuracy and
efficiency of these algorithms depend greatly on the quadrature method. We propose

to apply quasi-Monte Carlo (QMC) methods to the Deep Ritz Method (DRM) for
solving the Neumann problems for the Poisson equation and the static Schrödinger

equation. For error estimation, we decompose the error of using the deep learning

algorithm to solve PDEs into the generalization error, the approximation error and
the training error. We establish the upper bounds and prove that QMC-based DRM

achieves an asymptotically smaller error bound than DRM. Numerical experiments

show that the proposed method converges faster in all cases and the variances of the
gradient estimators of randomized QMC-based DRM are much smaller than those of

DRM, which illustrates the superiority of QMC in deep learning over MC.
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1. Introduction

Partial differential equations (PDEs) are classical models for describing problems

arising in physics, finance and engineering. Solving PDEs by deep learning has at-

tracted considerable attention, see [9, 14, 19]. Recently, a variety of well-designed

deep learning algorithms for solving PDEs have been proposed, such as the physics-

informed neural networks (PINNs) [29], the Deep Ritz Method (DRM) [10] and the

Deep Galerkin Method (DGM) [30]. The basic idea of these algorithms is to minimize

the loss by training the deep neural network. These deep learning algorithms have
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shown satisfactory efficiency and a wide range of application scenarios. However, re-

searchers are not satisfied with treating a deep learning algorithm as a black box. It is

desirable to identify the factors that drive the algorithm in mathematics and improve

the algorithm by modifying these factors.

In this paper, we study the effect of the different sampling strategies on DRM. There

have been some papers about the error analysis of DRM, see [8, 16, 22]. Briefly, the

essence of DRM is to solve

min
u∈H1(Ω)

I(u),

where I(u) is in the form of an integral and H1(Ω) is a Sobolev space. Obviously, the

quadrature method plays an important role in DRM. For high-dimensional PDEs, the

algorithm may suffer from the curse of dimensionality. We aim to enhance the accuracy

and efficiency of DRM by combining it with a new sampling strategy. To be specific,

the accuracy is expressed in terms of the total error, namely the difference between the

limit of the algorithm output and the exact solution of the PDE, and the efficiency is

measured by the convergence rate and stability of the algorithm.

Quasi-Monte Carlo (QMC) methods are efficient quadrature methods, which choose

deterministic points, rather than random points, as sample points. QMC methods are

widely used in finance [20], statistics [11], etc. The Koksma-Hlawka inequality [26]

yields that QMC integration has an error bound in the order of O(n−1(log n)d) for the

integrands with suitable smoothness, where n is the sample size and d is the dimension

of the domain of the integrand. It is easy to see that the order of QMC is asymptotically

better than that of Monte Carlo (MC). Although the error bound of QMC depends on

the dimension, there have been many results that indicate the superiority of QMC over

MC in high dimension [32]. Furthermore, Caflisch et al. [3] and Wang et al. [35]

attribute the superiority of QMC to the effective dimension of the integrand, which is

usually much lower than the nominal dimension. We believe that the integrands arising

in deep learning outlined in this paper have similar characteristics.

Recently, the application of QMC methods combined with finite element methods

to solve some classes of PDEs with random coefficients has achieved good performance

[18] and some researchers have applied QMC methods to machine learning successfully

[6,21,23,24]. We propose to combine QMC methods with DRM (abbreviated as DRM-

QMC) for solving the Poisson equation and the static Schrödinger equation equipped

with the Neumann boundary condition. DRM-QMC can achieve asymptotically smaller

error bound than DRM. The proposed algorithm converges faster and is more stable

than DRM. To prove these results, we will

• formalize DRM-QMC through training the deep neural network by low discrep-

ancy sequences,

• decompose the total error into three parts, which correspond to the generalization

error, the approximation error and the training error, and then establish their

upper bounds to demonstrate their relationship with the mini-batch size,


