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Dynamic Analysis of an Impulsive Chemostat
Model with Microbial Competition and Nonlinear

Perturbation⇤

Yue Dong1 and Xinzhu Meng1,†

Abstract In this paper, we propose an impulsive chemostat model with mi-

crobial competition and nonlinear perturbation. First, thresholds for the ex-

tinction of both microoganisms are given. Second, we investigate the per-

sistence in mean and boundedness of the chemostat system by constructing

Lyapunov function. Moreover, we obtain the su�cient condition for the exis-

tence of an ergodic stationary distribution of the system. At last, numerical

simulations are presented, and the results show that the competition between

two species tends to make one species disappear from their common habitat,

especially when the competition is concentrated in a single resource.
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1. Introduction

The chemostat is a device used for the continuous cultivation of microorganisms, as
shown in Figure 1. It primarily consists of three parts, namely, the feeding device,
the cultivation device and the collecting device. The three devices are connected
by catheters, and nutrients flow into the culture device at a certain rate for the
cultivation of microorganisms in the device. Then, the mixture in the culture de-
vice flows into the collection device at the same rate to complete the collection of
the culture. As a complex system, it is di�cult for scholars to study the natural
ecosystem. However, if some minor factors are ignored, the complex system can be
simplified to make the influence of research factors more prominent and facilitate
the study. The chemostat can only control the velocity and concentration in order
to achieve the purpose of simplifying the model.
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Figure 1. The principle diagram of the chemostat

Many scholars have done a lot of work in chemostat dynamics modeling and
analysis, and abundant research results are obtained [3,4,11,14,15,17,19,21]. With
the advancement of the research, the models studied by scholars become more com-
plex, and the research results become more realistic. In [13], a deterministic im-
pulsive model which incorporates both toxin input and saturation function is pro-
posed. A stochastic di↵erential equation with nonlinear function was established
in [8]. Considering the influence of uncertain factors in the ecological environ-
ment [1, 7, 10, 20, 22], Lv, Meng and Wang [12] added random disturbances to the
above model and proposed a corresponding stochastic chemostat model. There
are complex relationships among microorganisms such as symbiosis, antagonism,
predation, competition and parasitism. Among them, microbial competition is to
compete for limited space or nutrients for growth, which drives development and
evolution [2, 5, 16, 18]. For example, micellar bacteria compete with filamentous
bacteria, resulting in the inhibition of growth on both sides. Therefore, based on
the existing studies, and considering the microorganisms exposed to toxic envi-
ronments, the stochastic impulsive chemostat model of competition between two
microorganisms is considered as follows.
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dS(t) =


D(S0 � S(t))� µ1S(t)x1(t)

�1(a1 + x1(t))
� µ2S(t)x2(t)

�2(a2 + x2(t))

�
dt

+ S(t) (�11 + �12S(t)) dB1(t),

dx1(t) =


µ1S(t)x1(t)

a1 + x1(t)
�Dx1(t)� r1C0(t)x1(t)

�
dt

+ x1(t) (�21 + �22x1(t)) dB2(t),

dx2(t) =


µ2S(t)x2(t)

a2 + x2(t)
�Dx2(t)� r2C0(t)x2(t)

�
dt

+ x2(t) (�31 + �32x2(t)) dB3(t),

dC0(t) = [kCe(t)� gC0(t)�mC0(t)] dt,

dCe(t) =� hCe(t)dt,
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t 6= n⌧,

�S(t) = 0,�x1(t) = 0,�x2(t) = 0,�C0(t) = 0,�Ce(t) = u, t = n⌧, n 2 Z+,

(1.1)
where Bi(t) are independent standard Brownian motions defined on the complete
probability space ⌦ with Bi(0) = 0 (i = 1, 2, 3), and �i,j > 0 (i, j = 1, 2, 3) represent
for the intensities of the white noises on the S(t), x1(t) and x2(t) respectively.
Besides, the other parameters are defined in Table 1.

This paper is organized as follows. In Section 2, we provide the relevant prelim-


