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Dynamics of a Discrete Two-Species Competitive

Model with Michaelies-Menten Type Harvesting

in the First Species
⇤
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Abstract In this paper, we use a semidiscretization method to derive a dis-
crete two-species competitive model with Michaelis-Menten type harvesting in
the first species. First, the existence and local stability of fixed points of the
system are investigated by employing a key lemma. Subsequently, the tran-
scritical bifurcation, period-doubling bifurcation and pitchfork bifurcation of
the model are investigated by using the Center Manifold Theorem and bi-
furcation theory. Finally, numerical simulations are presented to illustrate
corresponding theoretical results.
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1. Introduction and preliminaries

In the past few decades, more and more investigators have begun to pay atten-
tion to investigating competitive systems [1,2,4–6,9–12,15,19,24–26,29,30,32–34],
and many excellent results concerned with the extinction and global attractivity of
competitive systems have been obtained.

Murray [17] investigated the competitive system of traditional two-species Lotka-
Volterra model 8

><

>:

dx1
dt = x1(b1 � a11x1 � a12x2),

dx2
dt = x2(b2 � a21x1 � a22x2),

(1.1)

where x1 and x2 denote the population density of the two species at time t respec-
tively, and bi, aij , i, j = 1, 2, are positive constants.

In addition, when human activity is the main cause which leads to the extinc-
tion of endangered species, the study of resource-management, including fisheries,
forestry, and wildlife management, has great importance. It is sometimes necessary
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to harvest some populations, but harvesting should be regulated so that both the
ecological sustainability and conservation of the species can be implemented in a
long running. In order to further understand the scientific management of renew-
able resources and make the meaning of a model more realistic, many scholars are
devoted to establishing suitable biological models. Among them, Chen [3] studied
the following model

8
><

>:

dx
dt = r1x(1� x

k1
� ↵

y
k1
)� qEx

m1E+m2x
,

dy
dt = r2y(1� y

k2
),

(1.2)

where x and y denote the population density of the first and second species at time
t respectively, q denotes the fishing coe�cient of the first species, E denotes the
fishing e↵ort, and r1, r2, k1, k2,↵,m1,m2 are all positive constants. The function
h(x) = qEx

m1E+m2x
is called Michaelis-Menten type harvesting, which was proposed

by Clark and Mangel [7]. In other pieces of literature, h(x) may also take qEx,
qE
m

or qx
m .
Later, in [31], based on model (1.2), Yu, Zhu and Li considered the following

system: 8
><

>:

dx
dt = r1x(1� x

k1
)� ↵1xy � q1Ex

m1E+h1x
,

dy
dt = r2y(1� y

k2
)� ↵2xy,

(1.3)

where r1, r2, k1, k2,↵1,↵2, q1,m1, h1 and E are all positive. For simplicity, the au-
thors made the following nondimensional scheme:

t̄ = r1t, x̄ =
1

k1
x, ȳ =

1

k2
y.

Dropping the bars, system (1.3) becomes
8
><

>:

dx
dt = x(1� x� a1y � b

c+x ),

dy
dt = ⇢y(1� y � a2x),

(1.4)

where a1 = ↵1k2
r1

, b = q1E
k1r1h1

, c = m1E
h1k1

, ⇢ = r2
r1
, a2 = k1↵2

r2
.

Generally speaking, it is impossible to obtain an exact solution for a complex
di↵erential equation system. Therefore, one usually derives its approximate solution
by using computer. Then, we should study its corresponding discrete model. For
a given system, there are many discretization methods including Euler forward
di↵erence scheme, Euler backward di↵erence scheme, semidiscretization methods
and etc. In this article, we use the semidiscretization method, which has been
applied in many studies ( [8, 13, 14, 21]). For the related work, please also see
[16, 18,20,27,28].

The discrete version of system (1.4) has not been found to be investigated yet.
Now, we use the semidiscretization method to derive its discrete model. For this,
suppose that [t] denotes the greatest integer not exceeding t. We consider the
average change rate of system (1.4) at integer number points

8
><

>:

1
x(t)

dx(t)
dt = 1� x([t])� a1y([t])� b

c+x([t]) ,

1
y(t)

dy(t)
dt = ⇢(1� y([t])� a2x([t])).

(1.5)


