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Ground States for Singularly Perturbed Planar
Choquard Equation with Critical Exponential

Growth∗

Limin Zhang1,2, Fangfang Liao3, Xianhua Tang2 and Dongdong Qin2,†

Abstract In this paper, we are dedicated to studying the following singularly
Choquard equation

−ε2∆u+ V (x)u = ε−α [Iα ∗ F (u)] f(u), x ∈ R2,

where V (x) is a continuous real function on R2, Iα : R2 → R is the Riesz
potential, and F is the primitive function of nonlinearity f which has critical
exponential growth. Using the Trudinger-Moser inequality and some delicate
estimates, we show that the above problem admits at least one semiclassical
ground state solution, for ε > 0 small provided that V (x) is periodic in x or
asymptotically linear as |x| → ∞. In particular, a precise and fine lower bound

of f(t)

eβ0t2
near infinity is introduced in this paper.
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1. Introduction

This paper is devoted to studying the following Choquard equation{
−ε2∆u+ V (x)u = ε−α [Iα ∗ F (u)] f(u), x ∈ R2,

u ∈ H1(R2),
(1.1)
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where ε > 0 is a parameter, α ∈ (0, 2) and Iα : R2 → R is the Riesz potential
defined by

Iα(x) =
Γ
(
2−α
2

)
πΓ
(
α
2

)
2α|x|2−α

:=
Aα

|x|2−α
, ∀ x ∈ R2\{0},

F (t) =
∫ t

0
f(s)ds, V ∈ C(R2, (0,∞)) and f : R → R satisfy the following basic

assumptions:
(V0) 0 < infx∈R2 V (x) := V0 ≤ V (x) ≤ supx∈R2 V (x) := V∞ < ∞;

(V1) V (x) is 1-periodic in x1, x2;

(V2) infx∈R2 V (x) := V0 < V∞ := lim|x|→∞ V (x);

(F1) f ∈ C(R,R) and there exists β0 > 0 such that

lim
|t|→∞

|f(t)|
eβt2

= 0, for all β > β0

and

lim
|t|→∞

|f(t)|
eβt2

= +∞, for all β < β0;

(F2) |f(t)| = o(|t|α/2) as |t| → 0.

The majority of the literature focuses on the study of equation (1.1) in RN (N ≥
3). Let us recall some of them as follows. The singularly perturbed elliptic equation

−ε2∆u+ V (x)u = ε2−N−α [Iα ∗G(x, u)] g(x, u)

appears in the theory of Bose-Einstein condensation, and is used to describe the
finite-range many-body interactions between particles. Here, G(x, u) =

∫ u

0
g(x, s)ds.

For more related results, see, for example, [6, 7, 12,14,15,17,18,22] and so on.
In particular, the above equation is the so-called Choquard equation, when

N = 3. For ε =1, α = 1, V (x) ≡ 1 and g(x, u) = u, the autonomous equation

−∆u+ u =
[
I1 ∗ |u|2

]
u in R3

arises from the quantum theory of a polaron by Pekar [27]. Choquard [20] applied it
as an approximation to the Hartree-Fock theory of one-component plasma. In [24],
Penrose proposed it as a model of self-gravitating matter. We also mention [38],
where the fractional case is treated. Concerning other mathematical and physical
background on Choquard problems, see [3,25,28,29,31,33,34] the references therein.

It is well-known that when N ≥ 3 the Sobolev embedding yields H1(RN ) ↪→
Ls(RN ) for all s ∈ [2, 2∗], where 2∗ = 2N

N−2 . Different from N ≥ 3, the case
N = 2 is very special. In such case, the Sobolev exponent 2∗ becomes ∞, but
H1(R2) ̸⊆ L∞(R2). Thanks to the Trudinger-Moser inequality below, it provides
us a perfect replacement, which was first established by Cao in [8] (also seen in
other works [4, 5] and reads as follows).

Proposition 1.1 (Cao [8]). i) If β > 0 and u ∈ H1(R2), then∫
R2

(
eβu

2

− 1
)
dx < ∞;

ii) if u ∈ H1(R2), ∥∇u∥22 ≤ 1, ∥u∥2 ≤ M < ∞, and β < 4π, then there exists a
constant C(M,β), which depends only on M and β such that∫

R2

(
eβu

2

− 1
)
dx ≤ C(M,β).
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