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Abstract. The numerical solution of the fractional sub-diffusion equations on one di-
mensional space unbounded domain is considered. Based on the high-order local
artificial boundary conditions proposed in [Zhang W., et al., J. Math. Study., 2017,
50(1): 28-53], the original space unbounded problem can be reformulated to an initial-
boundary value problem on a bounded computational domain. By Alikhanov’s L2-1σ

formula and sum-of-exponentials approximation, a fast temporal second order differ-
ence scheme for the reduced problem is presented. The unique solvability, stability
and convergence order O(τ2+h2) of the proposed method are proved by means of en-
ergy method, where τ and h denote the time and space step sizes, respectively. Some
numerical examples are included to validate the theoretical results. To the best of our
knowledge, this is the first work that combines the high order numerical method with
the artificial boundary method for the time fractional diffusion problems on spatial
unbounded domains.
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1 Introduction

The fractional partial differential equations (FPDEs) have been received much attention
for their effective descriptions of the anomalous diffusion phenomenon observed in some
materials and processes with memory and hereditary properties [1–4]. Replacing the
integer order time derivatives in classic diffusion equations by fractional derivatives in
Caputo sense of order α(0<α<2), the fractional sub-diffusion equations (0<α<1) and
the fractional wave equations (1<α<2) are obtained, respectively [5, 6].
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The analytic solutions of most of FPDEs are not available or they are usually associ-
ated with some specific functions including the Mittag-Leffler function, the Wright func-
tion or the hyperbolic geometry functions which bring a huge obstacle to the practical cal-
culation. Therefore, the study of the numerical approaches becomes the main focus. For
the time fractional diffusion equations, there are numerous research works about their
numerical treatments and we just report some among them here. Sun and Wu [7] proved
strictly the convergence order of 2−α of the L1 formula and some difference schemes for
the fractional sub-diffusion and wave equations were derived. Lin and Xu [8] gave an
approximation for the fractional sub-diffusion equations using L1 formula in time and
Legendre spectral methods in space. Li et al. [9] studied the L1 Galerkin finite element
methods for the time fractional nonlinear parabolic equations. In [10], Alikhanov pre-
sented the L2-1σ formula for Caputo fractional derivative with 3−α order and some tem-
poral second order difference schemes were constructed for the fractional sub-diffusion
equations. Combining the order reduction method, Sun et al. [11] developed the temporal
second order difference scheme for the fractional wave equations. Due to the historical
dependence, the numerical schemes mentioned above all require O(N2) computational
cost with N denoting the time levels. Jiang et al. [12] proposed the sum-of-exponentials
(SOE) approximation for the kernel t−α in Caputo fractional derivative, by which the
fast L1 formula was obtained which reduces the computational complexity significantly
while keeping the accuracy. Yan et al. [13] further derived the fast L2-1σ formula. For
more corresponding works, we can see [14, 15].

Many problems in science and engineering can be described by partial differential
equations on spatial unbounded domains [16, 17], the heat transfer in solids, the flow
around an airfoil and option pricing are typical examples. Due to the unboundedness
of the physical area, some traditional numerical methods can not be applied directly.
In the past four decades, the artificial boundary methods (ABMs) have become efficient
numerical methods for this kind of problems. They introduce the artificial boundaries to
divide the domain into the bounded computational part and the remaining unbounded
part, and impose some suitable artificial boundary conditions (ABCs) on the artificial
boundaries. Then the original problem on space unbounded domains is transformed into
the boundary or initial-boundary value problem (called “reduced problem”) on space
bounded domain, which can be solved by many common numerical algorithms such
as the finite difference method or the finite element method. We shall refer the readers
to [18] for the comprehensive description of ABMs.

Roughly speaking, the ABCs can be divided into the global ABCs and the local ABCs.
For most space unbounded problems, the exact ABCs are the global ABCs and usually
take the form of integrals containing the unknown function with its derivatives. Until
now, many scholars have studied the exact global ABCs for various spatial unbounded
problems and constructed some valid numerical methods for the reduced problems, such
as Poisson equations [19], heat equations [16, 20], Burgers equation [21], Schrödinger
equations [22], Navier-Stokes system [23,24], etc. The reduced problems with exact global
ABCs are well-posed but require large computational cost and memory since the function


