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Abstract. In this paper, we study Riemannian optimization methods for the
problem of nonnegative matrix completion that is to recover a nonnegative low
rank matrix from its partial observed entries. With the underlying matrix in-
cohence conditions, we show that when the number m of observed entries are
sampled independently and uniformly without replacement, the inexact Rieman-
nian gradient descent method can recover the underlying n1-by-n2 nonnegative
matrix of rank r provided that m is of O(r2slog2s), where s=max{n1,n2}. Nu-
merical examples are given to illustrate that the nonnegativity property would
be useful in the matrix recovery. In particular, we demonstrate the number
of samples required to recover the underlying low rank matrix with using the
nonnegativity property is smaller than that without using the property.
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1 Introduction

Matrix completion, the problem of filling the missing elements by partially observed
matrices became popular after the Netflix prize competition which was held in 2006.
In order to avoiding being an underdetermined and intractable problem, low rank is
often a necessary hypothesis to restrict the degree of freedoms of the missing entries.
The matrix completion problem can be formulated as the following optimization
problem:

minimize rank(X)

subject to PΩ(X)=PΩ(A), (1.1)

where X ∈Rn1×n2 is the decision variable, the set Ω of locations corresponding to
the observed entries((i,j)∈Ω if Aij is observed) is a set of cardinality m sampled
uniformly at random, and the corresponding sampling operator PΩ is defined by

[PΩ(X)]i,j =

{
Xij, if (i,j)∈Ω,

0, otherwise.

In general, the rank minimization problem listed in (1.1) is NP-hard and compu-
tationally intractable. Many methods were proposed to solve the matrix completion
problem, see for instance [1–4, 6–14]. In general, it can be divided into two cat-
egories: convex and non-convex optimization methods. Under the framework of
convex optimization, the nuclear norm minimization problem

minimize ‖X‖∗
subject to PΩ(X)=PΩ(A), (1.2)

is often applied to recover the unknown matrix entries, where the nuclear norm
‖X‖∗ of a matrix X is defined as the sum of its singular values. With some suit-
able assumptions (incoherence conditions), it has been shown that if the number
of observed entries satisfies m∼O(sr2 logαs) for some α≥ 0, the underlying rank
r matrix can be exactly recovered with high probability, where s= max{n1,n2}.
Meanwhile, many computationally efficient algorithms are designed to solve model
(1.2), see [15–18] and references therein. On the other hand, there are non-convex
optimization methods for solving (1.1) by parameterizing in a factorization form or
studying in a set of fixed rank matrices. The computational cost of most non-convex
algorithms are shown to be cheaper than that of the convex methods. The major
issue is how to choose suitable initial guesses in non-convex optimization methods
such that they can converge to the underlying low rank solution.


