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Abstract. In this paper, we present a quadratic auxiliary variable (QAV) technique to
develop a novel class of arbitrarily high-order energy-preserving algorithms for the
Camassa-Holm equation. The QAV approach is first utilized to transform the origi-
nal equation into a reformulated QAV system with a consistent initial condition. Then
the reformulated QAV system is discretized by applying the Fourier pseudo-spectral
method in space and the symplectic Runge-Kutta methods in time, which arrives at
a class of fully discrete schemes. Under the consistent initial condition, they can be
rewritten as a new fully discrete system by eliminating the introduced auxiliary vari-
able, which is rigorously proved to be energy-preserving and symmetric. Ample nu-
merical experiments are conducted to confirm the expected order of accuracy, con-
servative property and efficiency of the proposed methods. The presented numerical
strategy makes it possible to directly apply a special class of Runge-Kutta methods
to develop energy-preserving algorithms for a general conservative system with any
polynomial energy.
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1 Introduction

In this paper, we consider the Camassa-Holm (CH) equation

ut−uxxt+3uux−2uxuxx−uuxxx =0, (x,t)∈ [a,b]×(0,T], (1.1)

with periodic boundary condition

u(x,t)=u(b−a+x,t), t∈ [0,T], (1.2)

and initial condition
u(x,0)=u0(x), x∈ [a,b], (1.3)

where u is the fluid velocity in the x direction (or equivalently the height of the fluid’s
free surface above a flat bottom). The CH equation is a model for the unidirectional prop-
agation of shallow water waves [8] as well as a model for nonlinear waves in cylindrical
hyperelastic rods [17]. It has a bi-Hamiltonian structure with an infinite number of con-
served functionals [20, 21]. In particular, the system (1.1)-(1.3) possesses the following
three conserved quantities

I=
∫ b

a
udx, M=

∫ b

a
(u2+u2

x)dx, H=
1
2

∫ b

a
(u3+uu2

x)dx. (1.4)

where I ,M andH correspond to mass, momentum and energy of the original problem,
respectively.

Because of the rich mathematical structure and interesting properties of the CH equa-
tion [8, 14, 20, 21, 38], it is very important to develop geometric numerical integrators or
structure-preserving algorithms for solving the CH equation accurately. In the early days,
some spatial structure-preserving algorithms were proposed for the CH equation, includ-
ing finite difference method [10, 30], Fourier spectral or pseudo-spectral method [36, 37]
and local discontinuous Galerkin method [48], etc. Some adaptive spatial approxima-
tions were presented to capture the peakon efficiently [2, 19, 48]. There also have been
developed more fully discrete structure-preserving algorithms, such as symplectic or
multi-symplectic integrators [6,12,45,51], momentum-preserving methods [13,40,42] and
energy-preserving algorithms [13, 23, 41]. Most existing conservative schemes are based
on discrete variational derivative methods [16, 22], which are often fully implicit. Re-
cently, Hong et al. developed two linear-implicit momentum-conserving schemes, which
could preserve the original momentum exactly [31]. According to the polarised discrete
gradient methods and the Kahan’s method, Eidnes et al. constructed two linearly im-
plicit energy-preserving schemes for the CH equation [18]. Jiang et al. applied the energy
quadratization approach [44,49] to obtain two linear energy-preserving schemes [33,34].
At each time step, the linearly implicit schemes only require to solve a linear system,
which leads to considerably lower costs than the implicit ones. However, these linear-
implicit energy-preserving methods only maintain a modified energy, which is not equal


