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Abstract. It is found that the solution remapping technique proposed in [Numer. Math.
Theor. Meth. Appl., 2020, 13(4)] and [J. Sci. Comput., 2021, 87(3): 1-26] does not work
out for the Navier-Stokes equations with a high Reynolds number. The shape defor-
mations usually reach several boundary layer mesh sizes for viscous flow, which far
exceed one-layer mesh that the original method can tolerate. The direct application to
Navier-Stokes equations can result in the unphysical pressures in remapped solutions,
even though the conservative variables are within the reasonable range. In this work,
a new solution remapping technique with lower bound preservation is proposed to
construct initial values for the new shapes, and the global minimum density and pres-
sure of the current shape which serve as lower bounds of the corresponding variables
are used to constrain the remapped solutions. The solution distribution provided by
the present method is proven to be acceptable as an initial value for the new shape.
Several numerical experiments show that the present technique can substantially ac-
celerate the flow convergence for large deformation problems with 70%-80% CPU time
reduction in the viscous airfoil drag minimization.
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1 Introduction

In recent decades, aerodynamic shape optimization (ASO) design methods based on
computational fluid dynamics (CFD) have been developed rapidly. A large number of
intermediate shapes in the optimization process need to be simulated to the steady state
to evaluate their aerodynamic performance. As a result, the 2-nd order finite volume
method with a cheap computational cost is widely used to solve the flow field gov-
erning equations to reduce the time required for each intermediate shape in industrial
applications [4, 9, 11]. Recently, high-order numerical methods represented by the (di-
rect) discontinuous Galerkin [5,6] methods are widely applied in flow field simulation to
meet the requirements of higher precisions [2, 10, 21], but their expensive computational
cost [22, 23] prevents them further development from industrial applications.

The selection of the initial value of flow field for intermediate shapes would signifi-
cantly affect the efficiency of optimization. There are two popular methods of the initial
value construction. One is to use the freestream flow, that strategy always converges to
the steady-state solution, but usually with extremely poor efficiency. The other is to copy
the converged solution of the previous shapes directly [14,27,30], such an approach may
occasionally result in lower efficiency, we think possibly because the shape deformation
is not taken into consideration. We know that the evolution of the adjacent intermedi-
ate shapes in the optimization process is usually small, this implies that the steady-state
flow field of the next intermediate shape is a small deviation from that of the present
shape. As a result, it is possible to accelerate the flow convergence by wisely employing
the steady-state solution of the previous shape to construct the initial values of the new
shapes [3].

Recently, the solution remapping technique based on the above concept has been
successfully applied to the ASO with great acceleration performance [19, 20] and can
save 70%-80% CPU time for inviscid flow. This technique was first proposed based on
the finite volume method for solving the Euler equations by Wang et al. [20] with the
requirement of shape deformation limited in about one-layer mesh size. Later, Wang
and Liu extended this technique to high order DG methods [19] with a maximum-and-
minimum-preserving limiter applied to modify the remapped solutions in order to relax
its limitation of less one-layer mesh size on the shape deformation. We find that negative
pressure in the remapped solutions can occur when directly applied to Navier-Stokes
equations, even though the conservative variables are within the reasonable range for
the large shape deformations.

In this work, we shall develop a new solution remapping technique based on the
above-mentioned idea to the Navier-Stokes equations for viscous flow. Since there are
extremely thin boundary layer meshes near the airfoil in viscous flow, the shape de-
formations usually exceed several boundary layer meshes, which means that the shape
deformations are always relatively large deformations compared to the boundary layer
meshes. Therefore, in order to make this technique available to the N-S equations, we
have to break through the boundary layer mesh size limitation for large deformation
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