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Abstract. We present different regularizations and numerical methods for the nonlin-

ear Schrödinger equation with singular nonlinearity (sNLSE) including the regularized

Lie-Trotter time-splitting (LTTS) methods and regularized Lawson-type exponential in-

tegrator (LTEI) methods. Due to the blowup of the singular nonlinearity, i.e., f (ρ) = ρα

with a fixed exponent α < 0 goes to infinity when ρ → 0+ (ρ = |ψ|2 represents the

density with ψ being the complex-valued wave function or order parameter), there are

significant difficulties in designing accurate and efficient numerical schemes to solve the

sNLSE. In order to suppress the round-off error and avoid blowup near ρ = 0+, two

types of regularizations for the sNLSE are proposed with a small regularization param-

eter 0< ǫ≪ 1. One is based on the local energy regularization (LER) for the sNLSE via

regularizing the energy density F(ρ) = ρα+1/(α+ 1) locally near ρ = 0+ with a polyno-

mial approximation and then obtaining a local energy regularized nonlinear Schrödinger

equation via energy variation. The other one is the global nonlinearity regularization

which directly regularizes the singular nonlinearity f (ρ) = ρα to avoid blowup near

ρ = 0+. For the regularized models, we apply the first-order Lie-Trotter time-splitting

method and Lawson-type exponential integrator method for temporal discretization and

combine with the Fourier pseudospectral method in space to numerically solve them.

Numerical examples are provided to show the convergence of the regularized models

to the sNLSE and they suggest that the local energy regularization performs better than

directly regularizing the singular nonlinearity globally.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is a prototypical dispersive partial differ-

ential equation (PDE) playing an important role in different areas of physics, chemistry and

engineering. The relevant applications vary from Bose-Einstein condensate (BEC) [6, 35],

nonlinear optics [1,3] to plasma and particle physics [6,40].

In general, the time-dependent NLSE is in the following form [16,38,40]:

i∂tψ(x, t) = −∆ψ(x, t) + λ f
�
|ψ(x, t)|2
�
ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) =ψ0(x), x ∈ Ω,
(1.1)

where i =
p
−1 is the complex unit, t is time, x ∈ Rd (d = 1,2,3) is the spatial coordinate,

ψ := ψ(x, t) ∈ C is the dimensionless wave function or order parameter, ψ0 := ψ0(x) is

a given complex-valued initial data, λ 6= 0 is a given real constant with λ > 0 for repulsive

or defocusing interaction and λ < 0 for attractive or focusing interaction, and Ω = Rd or

Ω ⊂ Rd is a bounded domain with periodic boundary condition or homogeneous Dirichlet

boundary condition or homogeneous Neumann boundary condition. The nonlinearity is

given as [16,35,40]

f (ρ) := ρα, ρ ≥ 0, (1.2)

where ρ := |ψ|2 is the density and the exponentα > −1 is a real constant, which is different

in diverse applications. Specifically, when α = 1, i.e., f (ρ) = ρ, it is the most popular

NLSE with cubic nonlinearity and also called Gross–Pitaevskii equation (GPE), especially

in BEC [35, 38, 40]; and when α = 2, it is related to the quintic Schrödinger equation,

which is regarded as the mean field limit of a Boson gas with three-body interactions and

also widely used in the study of optical lattices [18,36]. When 0< α < 1 or 1< α < 2, it is

usually stated that the NLSE with semi-smooth (or fractional) nonlinearity, which has been

adapted in different applications [13,15,23,29]. For the NLSE with smooth or semi-smooth

nonlinearity, i.e., α > 0, the existence and uniqueness of the Cauchy problem as well as the

finite time blow-up have been widely studied [16,40].

Recently, interests have been surged for the study of the NLSE (1.1) with singular non-

linearity (1.2), i.e., α ∈ (−1,0). In this case, the NLSE (1.1) can be formally obtained as

the nonrelativistic limit of the nonlinear Dirac equation with singular (or fractional) non-

linearity [30, 31], which was proposed as a model of strong interaction of particles and it

recovered the MIT bag model [19, 24]. When α < 0 in (1.2), the nonlinearity f (ρ) has

a singularity at the origin and it is also called sublinear Schrödinger equation for the case

α ∈ (−1/2,0) in the mathematical literature [4, 27]. The study of the NLSE with singular

nonlinearity is much more complicated in both analytical and numerical aspects. In recent

years, dispersive PDEs with singular nonlinearity have attracted much attention, e.g., the

existence of standing waves for nonlinear Dirac fields has been proven and the solution

is of class C1 when −1/3 < α < 0, while |∇ψ| is infinite on some sphere {|x | = R} for

−1 < α < −1/3 [5]. Since the nonlinear Schrödinger equation is the nonrelativistic limit

of the nonlinear Dirac equation, it is also an interesting and challenging problem to study

the nonlinear Schrödinger equation with such a singular nonlinearity. In this paper, we


