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FULL DISCRETISATION OF THE TIME DEPENDENT
NAVIER-STOKES EQUATIONS WITH ANISOTROPIC SLIP

BOUNDARY CONDITION

RIM ALDBAISSY, NANCY CHALHOUB, J. K. DJOKO, AND TONI SAYAH∗

Abstract. In this work, we study theoretically and numerically the non-stationary Navier-
Stokes’s equations under power law slip boundary condition. We establish existence of a unique
solution by using a semi-discretization in time combined with the weak convergence approach.
Next, we formulate and analyze the discretzation in time and the finite element approximation
in space associated to the continuous problem. We derive optimal convergence in time and space
provided that the solution is regular enough on the slip zone. Iterative schemes for solving the
nonlinear problems is formulated and convergence is studied. Numerical experiments presented
confirm the theoretical findings.
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1. Introduction

We are concerned with the dicretization of the non-stationary incompressible
Navier-Stokes equations

(1)


∂u

∂t
− 2ν divDu+ [u · ∇]u+∇p = f in Ω× (0, T ),

div u = 0 in Ω× (0, T )
u(x,0) = u0 in Ω× {0},

where Ω is a open and bounded domain in IRd, with a Lipschitz-continuous bound-
ary ∂Ω. It is assumed that d = 2, 3, and T > 0 is the final time of observation of the
fluid. The unknowns are the velocity u and the pressure p. f is the external force
acting on the fluid and ν is the kinematic viscosity of the fluid, assume non-negative.
u0 is the initial velocity and we assume for the moment that div u0 = 0. We recall
that the Cauchy stress tensor is T = −pI + 2νDu, with I, the identity matrix in
IRd×d, while the symmetric part of the velocity gradient is 2Du = ∇u + (∇u)T .
We are interested in (1) when the position and the direction of the slip boundary
condition are taken into account (see [14, 15]). We then assume that the boundary
∂Ω is made of two components S and Γ, such that ∂Ω = S ∪ Γ, with S ∩ Γ = ∅.
We assume the homogeneous Dirichlet condition on Γ, that is

(2) u = 0 on Γ .

Thus Γ is the porous or artificial boundary where the fluid is prescribed. On S, we
assume the impermeability condition

(3) u · n = 0 on S ,
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where n : S −→ IRd is the normal outward unit vector to S. S is an impermeable
solid surface along which the fluid may slip. Taking the scalar product of u and
the balance of linear momentum in (1), we obtain
(4)
1

2

d

dt

∫
Ω

|u|2 dx+ 2ν

∫
Ω

|Du|2 dx+

∫
S

(−Tn)τ · uτ dσ =

∫
Ω

f · udx , for all t ≥ 0 ,

with dσ being the surface measure associated to S. Also, for any vector v defined on
S, we set vτ = v−(v ·n)n. Thus (Tn)τ denotes the projection of the normal stress
into the corresponding tangent plane. We note that the first term in (4) stands for
the change of the kinetic energy, the second and third expressions represent the
energy that is dissipated and transformed to other form forms of energy. We are
more interested in the energy on the boundary S that can only be fully expressed if
(Tn)τ is given. For that purpose, the most general relation between uτ and (Tn)τ
is the implicit constitutive relation [19]

(5) ψ(uτ , (Tn)τ ) = 0

where ψ is function. The simplest form of (5) that ensure the non-negativity of∫
S

(−Tn)τ · uτ dσ is the choice

(−Tn)τ = αuτ dσ , α > 0 .

This is the Navier’s slip boundary conditions. If (Tn)τ = 0, then one gets a perfect
slip boundary condition, while if uτ = 0, then there is no slip. We are interested
in the power law slip boundary condition given as follows [7]

(6) (Tn)τ + |Kuτ |s−2K2uτ = 0 on S × (0, T ) ,

where |v|2 = v · v is the Euclidean norm. K is an anisotropic tensor, assumed
to be uniformly positive definite, symmetric, and bounded. s is a real, strictly
positive number representing the flow behavior index. The tangential shear is a
power law function of the tangential velocity. Such a boundary condition arises
when the contact surface is lubricated with a thin layer of a non-Newtonian fluid.
It is manifest that for s = 2 and K = I, one obtains the classical Navier’s slip
condition. The anisotropic slip law (6) defines from the slip relation introduce in
[14, 15]; that is

(7) (Tn)τ + ψ(uτ )uτ = 0 on S × (0, T ) ,

where the function ψ is real valued and satisfies;
(i) ψ is bounded and there exist two positive constants α1, α2 such that for

any vector v ∈ IRd

(8) α1 ≤ ψ(v) ≤ α2 .

(ii) ψ is Lipschitz-continuous with Lipschitz constant λ, that is

(9) ∀ v,w ∈ IRd , |ψ(v)− ψ(w)| ≤ λ |v −w| .

It is manifest by taking ψ(uτ ) = |Kuτ |s−2
K2, the conditions (8) and (9) are

not verified. Hence (6) does not belongs to the class of anisotropic slip boundary
conditions defined by C. Le Roux in [14, 15]. We intend to study the finite element
solution of the Navier-Stokes equations with (7), (8) and (9). A similar model but
for the stationary case has been analysed in [7] using conforming finite element
approach.


