
INTERNATIONAL JOURNAL OF c⃝ 2023 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 20, Number 4, Pages 478–496 doi: 10.4208/ijnam2023-1020

WELL-POSEDNESS AND CONVERGENCE ANALYSIS OF A

NONLOCAL MODEL WITH SINGULAR MATRIX KERNEL

MENGNA YANG AND YUFENG NIE∗

Abstract. In this paper, we consider a two-dimensional linear nonlocal model involving a singular
matrix kernel. For the initial value problem, we first give well-posedness results and energy

conservation via Fourier transform. Meanwhile, we also discuss the corresponding Dirichlet-type
nonlocal boundary value problems in the cases of both positive and semi-positive definite kernels,
where the core is the coercivity of bilinear forms. In addition, in the limit of vanishing nonlocality,
the solution of the nonlocal model is seen to converge to a solution of its classical elasticity local

model provided that ct = 0.
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1. Introduction

In this paper, we consider a two-parameter nonlocal model as follows,

(1) utt(t,x) = Lδu(t,x) + b(t,x), (t,x) ∈ (0, T )× S,

where the nonlocal integral operator Lδ is given by

(2)
Lδu(t,x) : =

∫
S∪Ωδ

(
cn(x

′ − x)⊗ (x′ − x)

|x′ − x|2
+

ct
[
(x′ − x)⊗ (x′ − x)

]∗
|x′ − x|2

)
×
(
u(t,x′)− u(t,x)

)
χδ(x

′ − x)dx′,

S ⊆ R2 is an open domain (S = Ω or S = R2), Ωδ = {x ∈ R2 \Ω : dist(x, ∂Ω) ≤ δ}
is a collar domain surrounding a bounded open set Ω ⊆ R2. u : (0, T ) × S ∪ Ωδ

represents displacement, and b is the external force density. cn, ct denote the tensile
parameter and shear parameter, their expressions can be derived as

(3) cn =
8E(1 + ν)

πδ4(1− ν2)
, ct =

8E(1− 3ν)

πδ4(1− ν2)
,

here E, ν are the Young’s modulus and Poisson’s ratio, and we note that 0 ≤
ν ≤ 1/3. The horizon parameter δ characterizes the effective range of nonlocal
interaction between the material point x′ and point x, and χδ(·) is the standard
canonical function, i.e.,

χδ(x
′ − x) =

{
1, |x′ − x| ≤ δ,

0, otherwise.

In recent years, there have been lots of works done on nonlocal equation of the type
(1) and relevant variational problems, including theory analysis [1, 2, 3], numerical
methods [4, 5, 6, 23], model development and applications [8, 20, 29]. Regarding
the well-posedness theory for equations similar to (1), Emmrich and Weckner [13,
14] proved the well-posedness of the initial problem on bounded domains by using
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semigroup theory of operators. In [17], the well-posedness of a scalar nonlocal
evolution problem is obtained by utilizing properties of Neumann series and Volterra
integral equations, where the boundary data is proposed on the classical boundary
domain ∂Ω. In particular, Du and Zhou [21] established the well-posedness results
for a nonlocal initial problem in the Fourier space, which takes into account the
non-integrable kernels. In addition, Aksoylu and Parks [15] considered scalar linear
stationary nonlocal problems, and gave the well-posedness results, the key step
is to utilize domain decomposition methods to prove the coercivity, (see also [16]
for a similar discussion). More generally, Mengesha and Du [12] proved the well-
posedness for a nonlinear stationary nonlocal problem based on variational methods.
We refer to [10, 17, 18] for an exhaustive introduction of well-posedness results.

On the other hand, observe that δ acts as a bridge between nonlocal models and
the corresponding local models, so the study of reduction of nonlocal models to local
models in the limit of δ → 0 has attracted much attention. In [10], the authors
proved that the nonlocal integral operator applied to smooth functions converges
asymptotically to the corresponding classical differential operator by using using
Taylor expansion. In particular, based on Fourier transform, Mikata [11] analyzed
the limit behaviors of solutions for a kinds of peristatic and peridynamic nonlocal
problems, where solutions of these nonlocal equations approach solutions of the
corresponding local equations with horizon vanishes. More results can be found in
[7, 9, 19, 21] and references therein.

Inspired by the above papers [10, 15, 21], we will prove the well-posedness and
convergence results for the initial and stationary cases of equation (1), which are
the focus of our paper. For the well-posedness results of stationary nonlocal prob-
lems, the coercivity of bilinear forms is ensured by using relative compactness and
some key inequalities. In particular, we don’t rely on the proof in [10, 21] for con-
vergence results as δ → 0, but made some modifications, and introduce some other
techniques.

This paper is organized as follows. In Section 2, for the initial value problem
associated to equation (1), we prove the well-posedness results and energy conser-
vation via Fourier transform. In Section 3, for the corresponding Dirichlet-type
nonlocal boundary problems, the well-posedness results of solution are established
in the cases of positive definite kernel and semi-positive definite kernel. In Section
4, we shall analyze the limit behaviors of solutions of nonlocal problems as δ → 0.
Finally, we complete the paper with an appendix.

Notation 1.1. Throughout the paper, we will denote various generic positive con-
stants by the same letter C, although the constants may differ from line to line.
Moreover, relevant dependencies on parameters will be emphasized using parenthe-
ses, i.e., C ≡ C(T, δ) means that C depends only on T, δ. The notation ⊗ denotes
the dyadic product and [(x′−x)⊗(x′−x)]∗ = I−(x′−x)⊗(x′−x), here I is a second
order identity matrix. (·, ·) is the inner product defined as (u,v) =

∫
R2 u(x)·v(x)dx.

M is a finite number.

To achieve our main results, let us first give a brief review of model equation
(1). Equation (1) can be deduced from the following two-parameter nonlocal peri-
dynamic model by a series of simplification,

(4) utt(t,x) =

∫
Bδ(x)

(cnηnên + ctηtêt)dx
′ + b(t,x), (t,x) ∈ (0, T )× S.


