
Journal of Computational Mathematics

Vol.41, No.5, 2023, 866–878.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2201-m2019-0145

EFFICIENT NONNEGATIVE MATRIX FACTORIZATION VIA

MODIFIED MONOTONE BARZILAI-BORWEIN METHOD
WITH ADAPTIVE STEP SIZES STRATEGY*

Wenbo Li

Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China;

College of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

Email: wbli57@hotmail.com

Jicheng Li1) and Xuenian Liu

College of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

Email: jcli@mail.xjtu.edu.cn, lxn901018@163.com

Abstract

In this paper, we develop an active set identification technique. By means of the active

set technique, we present an active set adaptive monotone projected Barzilai-Borwein

method (ASAMPBB) for solving nonnegative matrix factorization (NMF) based on the

alternating nonnegative least squares framework, in which the Barzilai-Borwein (BB) step

sizes can be adaptively picked to get meaningful convergence rate improvements. To get

optimal step size, we take into account of the curvature information. In addition, the larger

step size technique is exploited to accelerate convergence of the proposed method. The

global convergence of the proposed method is analysed under mild assumption. Finally,

the results of the numerical experiments on both synthetic and real-world datasets show

that the proposed method is effective.
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1. Introduction

For a given nonnegative data matrix 𝑉 ∈ R𝑚×𝑛 and a pre-specified positive integer 𝑟 <

min(𝑚,𝑛), we consider in this paper the following optimization problem

min
𝑊∈R𝑚×𝑟,𝐻∈R𝑟×𝑛

𝑓(𝑊,𝐻) ≡ 1

2
‖𝑉 −𝑊𝐻‖2𝐹 , subject to 𝑊 ≥ 0, 𝐻 ≥ 0, (1.1)

where ‖ · ‖𝐹 is the Frobenius norm. This problem is known as nonnegative matrix factorization

(NMF) and has been used in many fields such as image processing [8], text mining [18], machine

learning [15], etc.

In the last decade, many efficient methods have been proposed to solve (1.1). The most well-

known and representative method is the multiplicative update (MU) algorithm [13, 14] which

was first proposed by Lee and Seung in 1999. The MU algorithm updates the two matrices by

using the gradient descent method at every step, however, the MU algorithm may not converge

to a stationary point (see [20]).
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Another commonly used approach is the alternating nonnegative least squares (ANLS)

framework which is to optimize 𝑊 and 𝐻 by alternately solving the following nonnegative

least squares subproblems:

𝑊 𝑘+1 = min
𝑊≥0

𝑓(𝑊,𝐻𝑘), (1.2)

𝐻𝑘+1 = min
𝐻≥0

𝑓(𝑊 𝑘+1, 𝐻). (1.3)

In [6], Grippo and Sciandrone have shown that any limit point of the sequence generated by

ANLS is a stationary point of (1.1). Since the role of 𝑊 and 𝐻 is perfectly symmetric for

the problem (1.1), therefore, many approaches only focus on solving (1.2), which include quasi

Newton method [12], alternating projected Barzilai-Borwein methods [9], projected gradient

method [16]. However, these methods may be inefficient due to the time-consuming line search.

Recently, a new researching [7] has shown that applying Nesterov’s optimal gradient method

(OGM) to solve the subproblem (1.2) or (1.3) without line search can converge faster. However,

Huang et al. [10] found that OGM might take lots of iterations to reach a given tolerance

which might degrade the efficiency of NeNMF [7]. In [10], the authors presented a quadratic

regularization projected Barzilai-Borwein (QRPBB) method, and showed that the QRPBB

method improves the performance of the projected Barzilai-Borwein method significantly and

outperforms other three methods including PG [16], APBB2 [9], and NeNMF [7]. However, the

QRPBB method is time-consuming for checking the nonmonotone line search. To overcome the

drawback, a monotone projected Barzilai-Borwein (MPBB) [11] method was suggested to solve

(1.2) or (1.3), in which the step size is determined without line search. But, by the analysis of

the MPBB method, we found that it still spent a lot of iterations to reach a given tolerance,

which is a serious disadvantage for large-scale problems. It motivates us to develop much faster

algorithm for solving the subproblem (1.2) or (1.3).

In this paper, we first modify the active set identifying technique in [19], and then by us-

ing the modified active set identifying technique, we propose an efficient method to solve the

subproblem (1.2) or (1.3) based on the MPBB method in [11], in which by using the norm of

gradient we design a adaptive step sizes selection strategy so that the Barzilai-Borwein (BB)

step sizes [1, 2] can be adaptively selected to improve the convergence rate. The numerical

experiments show that our adaptive step sizes strategy is superior to the alternate step sizes

strategy [3] in some cases. At each iteration, the ASAMPBB method adopts the modified

identification technique to eastimate the active and free variables, and the adaptive mono-

tone projected Barzilai-Borwein gradient method is used in the free subspace. Moreover, our

ASAMPBB method exploits the larger step size technique to accelerate convergence. Unlike

the APBB4 [9] and MPBB [11] methods, our ASAMPBB method uses the curvature informa-

tion to obtain the optimal step size. The global convergence result is established under mild

conditions. Numerical experiments on synthetic and real-world datasets indicate the proposed

method is encouraging.

The manuscript is organized as follows: First, in Section 2, we propose an efficient algorithm

and establish its global convergence. The experimental results are presented in Section 3, where

synthetic and real-world datasets are used to demonstrate the performance of the proposed

algorithm. Finally, Section 4 concludes the manuscript. Throughout the paper, the symbol

‖.‖𝐹 denotes the Frobenius norm of matrixes, ⟨., .⟩ denotes the inner product of two matrixes.


