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Abstract. A new and efficient neural-network and finite-difference hybrid method is
developed for solving Poisson equation in a regular domain with jump discontinuities
on embedded irregular interfaces. Since the solution has low regularity across the in-
terface, when applying finite difference discretization to this problem, an additional
treatment accounting for the jump discontinuities must be employed. Here, we aim to
elevate such an extra effort to ease our implementation by machine learning method-
ology. The key idea is to decompose the solution into singular and regular parts. The
neural network learning machinery incorporating the given jump conditions finds the
singular solution, while the standard five-point Laplacian discretization is used to ob-
tain the regular solution with associated boundary conditions. Regardless of the inter-
face geometry, these two tasks only require supervised learning for function approxi-
mation and a fast direct solver for Poisson equation, making the hybrid method easy
to implement and efficient. The two- and three-dimensional numerical results show
that the present hybrid method preserves second-order accuracy for the solution and
its derivatives, and it is comparable with the traditional immersed interface method in
the literature. As an application, we solve the Stokes equations with singular forces to
demonstrate the robustness of the present method.
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1 Introduction

In this paper, we aim to solve a d-dimensional (d= 2 or 3) elliptic interface problem de-
fined in a regular domain Ω⊂Rd, which is separated by an embedded interface Γ such
that the subdomains inside and outside the interface are denoted by Ω− and Ω+, respec-
tively. Along the interface Γ, there exists jump discontinuities that the solution must be
satisfied. With the associated boundary condition, the problem takes the form

∆u(x)= f (x), x∈Ω−∪Ω+, (1.1)
Ju(x)K=γ(x), J∂nu(x)K=ρ(x), x∈Γ, (1.2)

u(x)=ub(x), x∈∂Ω. (1.3)

Here, the jump J·K indicates the quantity approaching from Ω+ side minus the one from
Ω− side; the shorthand ∂nu represents the normal derivative ∇u·n in which n is the nor-
mal vector pointing from Ω− to Ω+. Notice that, here the underlying differential equa-
tion is subject to the Dirichlet-type boundary condition for illustration purpose, while
other types of boundary condition (Neumann or Robin) will not change the main ingre-
dients presented here. Since the Poisson equation is considered in Eq. (1.1), we simply
call the above problem as the Poisson interface problem hereafter.

As seen from Eqs. (1.1)-(1.3), the solution and its partial derivatives have jumps across
the interface. So, when applying the finite difference discretization to this problem, an
additional treatment accounting for those jump discontinuities must be employed at the
grid points near the interface. Over the past few decades, different discretization method-
ologies have been successfully developed to capture those jump conditions sharply or to
improve the overall numerical accuracy, such as the immersed interface method (IIM) [12,
13,16,18], ghost fluid method (GFM) [6,22], Voronoi interface method [7], to name a few.
Different approaches for solving interface problems such as the immersed finite element
method (IFEM) [8, 10] or other methods can be found in [20] and the references therein.

On the other hand, much attention has recently been paid to applying deep neural
networks (DNNs) to solve elliptic interface problems, rather than using traditional nu-
merical methods to solve such problems. Despite the success of the two mainstream
deep learning approaches (Physics-Informed Neural Networks (PINNs) [25, 26] and the
deep Ritz method [5]) in solving partial differential equations with smooth solutions,
learning methods based on these two frameworks for solving elliptic interface problems
with jump discontinuities remain to be improved. The main and intrinsic difficulty may
be attributed to the fact that the usual activation functions used in DNNs are generally
smooth; thus, DNN function approximators seem to be incapable of representing discon-
tinuous functions. To approximate such discontinuous solutions (or functions) and tackle
the elliptic interface problems, multiple independent networks need to be established and
linked with each other by imposing the jump conditions, see, e.g., piecewise DNNs [11],
interfaced neural networks [27], and deep unfitted Nitsche method [9]. The resulting
prediction errors in their test examples reach the magnitude O(10−3) to O(10−4) in rel-
ative L2 norm. Moreover, training these DNN models comes at the cost of having to
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