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Abstract

Graph sparsification is to approximate an arbitrary graph by a sparse graph and is useful

in many applications, such as simplification of social networks, least squares problems, and

numerical solution of symmetric positive definite linear systems. In this paper, inspired

by the well-known sparse signal recovery algorithm called orthogonal matching pursuit

(OMP), we introduce a deterministic, greedy edge selection algorithm, which is called

the universal greedy approach (UGA) for the graph sparsification problem. For a general

spectral sparsification problem, e.g., the positive subset selection problem from a set of

m vectors in Rn, we propose a nonnegative UGA algorithm which needs O(mn2 + n3/ε2)

time to find a 1+ε/β
1−ε/β -spectral sparsifier with positive coefficients with sparsity at most d n

ε2
e,

where β is the ratio between the smallest length and largest length of the vectors. The

convergence of the nonnegative UGA algorithm is established. For the graph sparsification

problem, another UGA algorithm is proposed which can output a 1+O(ε)
1−O(ε)

-spectral sparsifier

with d n
ε2
e edges in O(m+n2/ε2) time from a graph with m edges and n vertices under some

mild assumptions. This is a linear time algorithm in terms of the number of edges that

the community of graph sparsification is looking for. The best result in the literature to

the knowledge of the authors is the existence of a deterministic algorithm which is almost

linear, i.e. O(m1+o(1)) for some o(1) = O( (log log(m))2/3

log1/3(m)
). Finally, extensive experimental

results, including applications to graph clustering and least squares regression, show the

effectiveness of proposed approaches.
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1. Introduction

Graph sparsification aims to find a sparse subgraph from a dense graph G with n vertices

and m edges (typically m � n) so that the sparsified subgraph can serve as a proxy for G in
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numerical computations for graph-based applications. In [4], Batson, Spielman, and Srivastava

showed that for any undirected graph G one can find a sparse graph (sparsifier) whose graph

Laplacian matrix can well preserve the spectrum of the original graph Laplacian matrix. Such

a spectral graph sparsification plays increasingly important roles in many applications areas

in mathematics and computer science [24, 30, 38]. A related research, known as Laplacian

Paradigm, is illustrated as an emerging paradigm for the design of scalable algorithms in recent

years. We refer the reader to [35,39,42] for excellent surveys on its background and applications.

Mathematically, we can state the graph sparsification problem as follows. Consider an

undirected and weighted graph G = (V,E,w), where V is a set of vertices, E is a set of edges,

and w is a weight function that assigns a positive weight to each edge. The Laplacian matrix

of the graph G is defined by

LG =
∑

(u,v)∈E

w(u,v)(eu − ev)(eu − ev)
>,

where w(u,v) ≥ 0 is the weight of edge (u, v) and eu ∈ R|V | is the characteristic vector of vertex

u (with a 1 on coordinated u and zeros elsewhere). In other words, for any x ∈ Rn,

x>LGx =
∑

(u,v)∈E

w(u,v)

(
x(u)− x(v)

)2 ≥ 0.

That is, LG is positive semidefinite. Spectral graph sparsification is the process of approximating

the graph G by a sparse (linear-sized) graph H = (V, Ẽ, w̃) such that

ax>LGx ≤ x>LHx ≤ bx>LGx (1.1)

for all x ∈ R|V |, where b ≥ a > 0. Setting κ := b/a, H is called a κ-approximation of G or

a κ-sparsifier of G. Actually, if we restrict the inequality in (1.1) only for all x ∈ {0, 1}|V |,
one can obtain the cut sparsification [6]. Batson, Spielman and Srivastava [4, Theorem 1.1]

proved that for every weighted graph G and every ε ∈ (0, 1) there exists a weighted graph H

with at most d(n − 1)/ε2e edges which is a (1+ε)2

(1−ε)2 -approximation of LG. More generally, let

V = {v1, . . . ,vm} ⊂ Rn be a collection of vectors with m� n. We replace LG by

B =

m∑
i=1

viv
>
i , (1.2)

which is clearly positive semidefinite. Let Rm+ denote the nonnegative orthant in Rm and let

‖s‖0 denote the number of nonzero entries of the vector s. In [4, Theorem 1.2], the authors

proved that for any ε ∈ (0, 1), these exists an s = (s1, . . . , sm) ∈ Rm+ with ‖s‖0 ≤ drank(B)/ε2e
such that

(1− ε)2B �
m∑
i=1

siviv
>
i � (1 + ε)2B. (1.3)

Our aim is to use the ideas of the well-known orthogonal matching pursuit (OMP) ([33,40])

to study the spectral sparsification problem. We first focus on the following minimization

problem:

min
s∈Rm,s≥0

‖s‖0 s.t. (1− ε)2B �
m∑
i=1

siviv
>
i � (1 + ε)2B, (1.4)

where B =
∑m
i=1 viv

>
i and {v1 . . . ,vm} ⊂ Rn.


