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Abstract

We introduce a new algorithm, extended regularized dual averaging (XRDA), for solv-

ing regularized stochastic optimization problems, which generalizes the regularized dual

averaging (RDA) method. The main novelty of the method is that it allows a flexible

control of the backward step size. For instance, the backward step size used in RDA grows

without bound, while for XRDA the backward step size can be kept bounded. We demon-

strate experimentally that additional control over the backward step size can speed up the

convergence of the algorithm while preserving desired properties of the iterates, such as

sparsity. Theoretically, we show that the XRDA method achieves the same convergence

rate as RDA for general convex objectives.
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1. Introduction

Optimizing convex objectives with a regularization term which promotes a certain structure

of the minimizer, for example the ℓ1-norm promoting sparsity or the nuclear norm promoting

low rank [8], are very common and important in machine learning. Stochastic optimization of

such objectives poses a unique challenge since traditional methods such as stochastic gradient

descent (SGD) [14] are often not effective at producing the desired structure (i.e. sparsity or low-

rank) of the iterates [24]. This motivated the introduction of the well-known RDA method and

its variants, which are able to effectively produce the desired structure of the iterates [9,24]. We

introduce a generalization of RDA, called extended regularized dual averaging (XRDA), which

we show can significantly improve convergence while still preserving the desired structure of

the iterates.

Let us begin by describing these issues in detail and giving an overview of RDA. Consider

the subgradient descent and dual averaging methods [18] for minimizing a Lipschitz convex

function F , given by

xn+1 = xn − sngn, (1.1)
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where gn ∈ ∂F (xn). It is well known that with a step size sn = n−1/2 this method attains

a convergence rate ofO(n−1/2 logn). The simple dual averaging (SDA) method of Nesterov [18],

which is given by

xn+1 = argmin
x

(

n
∑

i=1

〈sigi, x〉+
αn+1

2
‖x− x1‖2

)

, (1.2)

generalizes subgradient descent (note that setting αn = 1 recovers the iteration (1.1)). The

advantage of the more general SDA method is that by setting sn = 1 and αn =
√
n, the

logarithmic factor in the convergence rate can be removed [18]. To illustrate the relationship

between this new method and original subgradient descent, we rewrite this new iteration as

xn+1 =
αn

αn+1

xn +

(

1− αn

αn+1

)

x1 − s̃ngn, (1.3)

where the effective step size is s̃n = sn/αn+1. Thus the difference between this new method

and the subgradient descent method is an averaging with the initial iterate x1. It is remarkable

that this provides a significant improvement in the convergence rate. These results hold in

more generality with the ℓ2 distance replaced by the Bregman distance Dφ(x, y) with respect

to a convex function φ, which we describe in more detail in Section 2, but for simplicity we stay

with the current setting throughout the introduction.

Next, we consider the composite (or regularized) optimization problem

argmin
x∈A

[

f(x) = F (x) +G(x)
]

, (1.4)

where F (x) is a convex Lipschitz function and G(x) is a convex function. A standard method

for solving this is the forward-backward subgradient method

xn+ 1

2

= xn − sngn,

xn+1 − xn+ 1

2

∈ −sn∂G(xn+1),
(1.5)

where gn ∈ ∂F (xn) [3]. Note that the second step above corresponds to backward Euler and is

known as the proximal map for G [6]. With a choice of step size sn = O(n−1/2), this method

also achieves a convergence rate of O(n−1/2 logn). As before the logarithm can be removed by

introducing a similar averaging with x1 as in the SDA method. Note also that the constants in

the convergence rates only depend upon the Lipschitz constant of F and not G, which is the

advantage of using the forward-backward splitting.

In many cases of practical interest, the subgradients gi ∈ ∂F (xi) in the forward step are

not computed exactly, but rather replaced by an unbiased sample g̃i at xi, i.e. E(g̃i) ∈ ∂F (xi).

Using this sample in (1.5) results in forward-backward stochastic gradient descent. Stochastic

gradient descent has proven extremely useful for training a variety of machine learning model-

s [14, 15]. However, for problems where the minimizer is expected to have a special structure,

forward-backward stochastic gradient descent often has the drawback that the iterates it pro-

duces do not have the desired structure. A very common example is sparsity. For instance,

consider the forward-backward stochastic gradient descent algorithm applied to an objective

F (x) +G(x) with G(x) = λ‖x‖1 an l1 regularization term

xn+ 1

2

= xn − sng̃i,


