U-Eigenvalues' Inclusion Sets of Complex Tensors

Chunlin Yang ${ }^{1}$ and Hongmei Yao ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Received 7 February 2023; Accepted (in revised version) 28 February 2023

Abstract

In this paper, we study some inclusion sets of US-eigenvalues and U-eigenvalues based on quantum information. We give three inclusion sets theorems of US-eigenvalues and two inclusion sets theorems of U-eigenvalues. And we obtain the relationships among these inclusion sets. Some numerical examples are shown to illustrate the conclusions.

AMS subject classifications: 15A18, 15A69
Key words: Complex tensor, $U S$-eigenvalue, U-eigenvalue, inclusion set.

1 Introduction

Let n be a positive integer and $[n]=\{1,2, \cdots, n\}$. Call

$$
\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{d}}\right) \quad \text { for all } a_{i_{1} i_{2} \cdots i_{d}} \in \mathbb{C}, \quad i_{k} \in\left[n_{k}\right], \quad k \in[d],
$$

a d-order $\left(n_{1} \times n_{2} \times \cdots \times n_{d}\right)$-dimensional complex tensor. When $n_{1}=n_{2}=\cdots=n_{d}=n$, \mathcal{A} is a d-order n-dimensional complex tensor. In particular, when $d=1$ and $d=2$, they are vector and matrix, respectively. Let $\mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ be the set of d-order $\left(n_{1} \times n_{2} \times \cdots \times n_{d}\right)$-dimensional tensors over \mathbb{C}.

In 2014, Ni et al. [1] proposed definitions of U-eigenvalues and $U S$-eigenvalues based on quantum information, i.e., converting the geometric measure of the entanglement [2-4] problem to an algebraic equation system problem. Using an iterative

[^0]algorithm, Che et al. [14] computed the U - and $U S$-eigenpairs of complex tensors in 2017. In 2018, Che et al. [15] studied the geometric measures of entanglement in multipartite pure states via complex-valued neural networks. Due to the complexity of tensor operations, it is troublesome to computing the U - and $U S$-eigenvalues of complex tensors. Sometimes, we only need to know the range of them. Therefore, the inclusion sets of U - and $U S$ - eigenvalues are given in this paper.

For $\mathcal{A}, \mathcal{B} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, the inner product and norm are

$$
\begin{aligned}
& \langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{d}=1}^{n_{1}, n_{2}, \cdots, n_{d}}\left(\mathcal{A}^{*}\right)_{i_{1} i_{2} \cdots i_{d}}(\mathcal{B})_{i_{1} i_{2} \cdots i_{d}}, \\
& \|\mathcal{A}\|=\sqrt{\langle\mathcal{A}, \mathcal{A}\rangle}
\end{aligned}
$$

where $\left(\mathcal{A}^{*}\right)_{i_{1} i_{2} \cdots i_{d}}$ denotes the complex conjugate of $(\mathcal{A})_{i_{1} i_{2} \cdots i_{d}}$. A rank-one tensor is defined as $\otimes_{i=1}^{d} \boldsymbol{x}^{(i)} \in \mathbb{C}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, where $\boldsymbol{x}^{(i)} \in \mathbb{C}^{n_{i}}, i \in[d]$. By tensor product,

$$
\begin{aligned}
& \mathcal{A}^{*}\left(\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(k-1)}, I_{n_{k}}, \boldsymbol{x}^{(k+1)}, \cdots, \boldsymbol{x}^{(d)}\right), \\
& \mathcal{A}\left(\boldsymbol{x}^{(1) *}, \cdots, \boldsymbol{x}^{(k-1) *}, I_{n_{k}}, \boldsymbol{x}^{(k+1) *}, \cdots, \boldsymbol{x}^{(d) *}\right),
\end{aligned}
$$

for vectors $\boldsymbol{x}^{(i)} \in \mathbb{C}^{n_{i}}(i \in[d])$ denote vectors in $\mathbb{C}^{n_{k}}$, whose p th components are

$$
\begin{align*}
& \left(\mathcal{A}^{*}\left(\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(k-1)}, I_{n_{k}}, \boldsymbol{x}^{(k+1)}, \cdots, \boldsymbol{x}^{(d)}\right)\right)_{p} \\
& =\sum_{i_{1}, \cdots, \cdots, i_{k-1}, i_{k+1}, \cdots, i_{d}=1}^{n_{1}, \cdots, n_{k+1}, \cdots, n_{d}}\left(\mathcal{A}^{*}\right)_{i_{1} \cdots i_{k-1} p i_{k+1} \cdots i_{d}} x_{i_{1}}^{(1)} \cdots x_{i_{k-1}}^{(k-1)} x_{i_{k+1}}^{(k+1)} \cdots x_{i_{d}}^{(d)}, \tag{1.1a}\\
& \left(\mathcal{A}\left(\mathbf{x}^{(1) *}, \cdots, \boldsymbol{x}^{(k-1) *}, I_{n_{k}}, \boldsymbol{x}^{(k+1) *}, \cdots, \boldsymbol{x}^{(d) *}\right)\right)_{p} \\
& =\sum_{i_{1}, \cdots, i_{k-1}, i_{k+1}, \cdots, i_{d}=1}^{n_{1}, \cdots, n_{k-1}, n_{k+1}, \cdots, n_{d}}(\mathcal{A})_{i_{1} \cdots i_{k-1} p i_{k+1} \cdots i_{d}} x_{i_{1}}^{(1) *} \cdots x_{i_{k-1}}^{(k-1) *} x_{i_{k+1}}^{(k+1) *} \cdots x_{i_{d}}^{(d) *}, \tag{1.1b}
\end{align*}
$$

where $I_{n_{k}}$ is a $n_{k} \times n_{k}$ identity matrix, $p \in\left[n_{k}\right], k \in[d]$.
A tensor $\mathcal{S}=\left(s_{i_{1} i_{2} \cdots i_{d}}\right) \in \mathbb{C}^{n \times n \times \cdots \times n}$ is called complex symmetric if its entries $s_{i_{1} i_{2} \cdots i_{d}}$ are invariant under any permutation of their indices. Let $\boldsymbol{x} \in \mathbb{C}^{n}$, similarly,

$$
\begin{aligned}
& \mathcal{S}^{*}\left(I_{n}, \boldsymbol{x}, \cdots, \boldsymbol{x}\right) \in \mathbb{C}^{n} \\
& \mathcal{S}\left(I_{n}, \boldsymbol{x}^{*}, \cdots, \boldsymbol{x}^{*}\right) \in \mathbb{C}^{n}
\end{aligned}
$$

[^0]: *Corresponding author.
 Emails: y17756488457@163.com (C. Yang), hongmeiyao@163.com (H. Yao)

