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Abstract. In this paper, we analyze and test a high-order compact difference
scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki
equation under the Neumann boundary condition. A three-level average tech-
nique is utilized, thereby leading to a linearized difference scheme. The main
work lies in the pointwise error estimate in H2-norm. The optimal fourth-order
convergence order is proved in combination of induction, the energy method
and the embedded inequality. Moreover, we establish the stability of the differ-
ence scheme with respect to the initial value under very mild condition, how-
ever, does not require any step ratio restriction. Extensive numerical examples
with/without exact solutions under diverse cases are implemented to validate
the theoretical results.
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1 Introduction

In this paper, we will study a high-order compact difference scheme for the initial-
boundary value problem of the two-dimensional nonlinear Kuramoto-Tsuzuki (KT)
equation in the form of

ut=(1+ic1)∆u+γu−(1+ic2)|u|2u, (x,y)∈Ω, 0<t≤T, (1.1a)

u(x,y,0)=ϕ(x,y), (x,y)∈ Ω̄, 0<t≤T, (1.1b)

∂u

∂ν
=0, 0<t≤T , (1.1c)

where u is an unknown complex function. i=
√
−1, c1 and c2 are two real constants,

which could characterize linear and nonlinear dispersion respectively, see e.g., [2]. γ
is a general parameter, which controls the degree of aggregation of solutions. The
calculated domain is on Ω=(0,L1)×(0,L2), and ν is the unit normal vector of the
boundary Ω. ∂Ω is the boundary of the domain. ϕ(x,y) is a given function.

The KT equation [6, 7] describes the behavior of two branches near the bifurca-
tion point. Many efforts have been made to develop highly effective algorithms
for the KT equation in one dimension. For example, Tsertsvadze [18] applied
Crank-Nicolson method to establish a nonlinear difference scheme for solving the
one-dimensional KT equation with the convergence order O(h

3
2 ) in the sense of dis-

crete L2-norm. Ivanauskas [5] investigated an effective implicit Crank-Nicolson type
weighted scheme for the KT equation and the convergence was proved. Sun [17] con-
structed a linearized three-level difference scheme, which can be solved by the double-
sweep method and proved that it is uniquely solvable and convergent. Sun [13,14,16]
further developed several new second-order difference schemes and made detailed
analysis at length. S̆tikonas [12] discussed the root condition of a finite difference
scheme for the KT equation. Omrani [11] analyzed the convergence of Galerkin
method for the KT equation. Wang et al. [19, 20] respectively used semi-explicit
difference scheme and nonlinear difference scheme for solving the KT equation.
Dong [2] gave a fourth-order split-step pseudospectral scheme and Hu et al. [4]
first proposed several fourth-order compact difference schemes for solving the KT
equation.

As far as we know, no research work has been done about the numerical solu-
tions of the high-dimensional KT equation under the Neumann boundary condition.
Therefore, it is necessary to develop effective numerical algorithms for the KT equa-
tion in high dimension. The studies that have been done for high-dimensional KT
equation so far include the following two work. One of them dues to Li et al. [9],
who discussed a type of the high-dimensional KT equation with Dirichlet boundary
condition by Galerkin finite element method and the optimal error estimates are


