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Abstract. In this work, we try to build a theory for random double tensor
integrals (DTI). We begin with the definition of DTI and discuss how random-
ness structure is built upon DTI. Then, the tail bound of the unitarily invariant
norm for the random DTI is established and this bound can help us to de-
rive tail bounds of the unitarily invariant norm for various types of two tensors
means, e.g., arithmetic mean, geometric mean, harmonic mean, and general
mean. By associating DTI with perturbation formula, i.e., a formula to relate
the tensor-valued function difference with respect the difference of the function
input tensors, the tail bounds of the unitarily invariant norm for the Lipschitz
estimate of tensor-valued function with random tensors as arguments are derived
for vanilla case and quasi-commutator case, respectively. We also establish the
continuity property for random DTI in the sense of convergence in the random
tensor mean, and we apply this continuity property to obtain the tail bound of
the unitarily invariant norm for the derivative of the tensor-valued function.
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1 Introduction

In recent years, tensors have been applied to different applications in science and en-
gineering [1–3]. However, most of these applications assume that systems modelled
by tensors are deterministic and such assumption is not always true and practical in
problems involving tensor formulations. In recent years, more research results have
pioneered some theories about random tensors [4–6]. One important question in ran-
dom tensors is about concentration behavior of random tensors. In [7], we extend
Lapalace transform method and Lieb’s concavity theorem from matrices to tensors,
and apply these tools to generalize the classical bounds associated with the names
Chernoff, Bennett, and Bernstein from the scalar to the tensor setting. In [8], this
work extends previous work by considering the tail behavior of the top k-largest sin-
gular values of a function of the tensors summation, instead of the largest/smallest
singular value of the tensors summation directly (identity function) explored in [7].
Majorization and antisymmetric tensor product tools are main techniques utilized
to establish inequalities for unitarily norms of multivariate tensors. Random tensors
summation form discussed in [7,8] is linear form, i.e., each summand of random ten-
sors with degree one. In works [9, 10], we extend the Hanson-Wright inequality for
the maximum eigenvalue of the quadratic form of random Hermitian tensors under
Einstein product. We separate the quadratic form of random tensors into diagonal
summation and coupling (non-diagonal) summation parts. For the diagonal part, we
can apply Bernstein inequality to bound the tail probability of the maximum eigen-
value [11] of the summation of independent random Hermitian tensors directly. For
coupling summation part, we have to apply decoupling method first, i.e., decoupling
inequality to bound expressions with dependent random Hermitian tensors with in-
dependent random Hermitian tensors, before applying Bernstein inequality again to
bound the tail probability of the maximum eigenvalue of the coupling summation
of independent random Hermitian tensors. Previous works are based on tensors
with Einstein products. Since Kilmer et al. introduced the new multiplication
method between two third-order tensors around 2008 and third-order tensors with
such multiplication structure are also called as T-product tensors [12], T-product
tensors have been applied to many fields in science and engineering, such as tensor
computations [13–20], signal processing, image feature extraction, machine learning,
computer vision, and the multi-view clustering problem, etc. The discussion about
concentration behaviors based on T-product tensors can also be found in [21–23].

Inspired by operator mean theory (also called Kubo–Ando theory), we try to
consider other operations besides + (arithmetic mean) among tensors [24]. The
matrix mean for double operators can be expressed by Eq. (5:1:2) in [24], which has
the same formation of double operator integral theory discussed in [25]. In this work,


