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Abstract. Nanoscale heat transfer cannot be described by the classical Fourier law
due to the very small dimension, and therefore, analyzing heat transfer in nanoscale

is of crucial importance for the design and operation of nano-devices and the op-

timization of thermal processing of nano-materials. Recently, time-fractional dual-
phase-lagging (DPL) equations with temperature jump boundary conditions have

showed promising for analyzing the heat conduction in nanoscale. This article
proposes a numerical algorithm with high spatial accuracy for solving the time-

fractional dual-phase-lagging nano-heat conduction equation with temperature jump

boundary conditions. To this end, we first develop a fourth-order accurate and un-
conditionally stable compact finite difference scheme for solving this time-fractional

DPL model. We then present a fast numerical solver based on the divide-and-conquer

strategy for the obtained finite difference scheme in order to reduce the huge compu-
tational work and storage. Finally, the algorithm is tested by two examples to verify

the accuracy of the scheme and computational speed. And we apply the numerical
algorithm for predicting the temperature rise in a nano-scale silicon thin film. Nu-

merical results confirm that the present difference scheme provides min{2−α, 2−β}
order accuracy in time and fourth-order accuracy in space, which coincides with the
theoretical analysis. Results indicate that the mentioned time-fractional DPL model

could be a tool for investigating the thermal analysis in a simple nanoscale semicon-

ductor silicon device by choosing the suitable fractional order of Caputo derivative
and the parameters in the model.
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1. Introduction

For the problem related to self-heating in micro-electronic device or for thermal

dynamics involving ultrashort-pulsed laser heating, the dual-phase-lagging (DPL) con-

stitutive relation, i.e.,

q(r, t) + τq
∂q

∂t
(r, t) = −κ

{

∇T(r, t) + τT
∂

∂t
∇T(r, t)

}

(1.1)

is one of the best descriptions of such heat transfer [2,6,7,9,13–15,18,21,23,27,28,30,

34,35]. Here, r stands for a material point, t is the time, κ is the thermal conductivity of

the material, q is the heat flux, T is the temperature, ∇ is the gradient operator, τq, τT
are the phase lags of the heat flux q and temperature gradient ∇T, respectively. The

DPL constitutive relation considers the effect of finite relaxation time using both heat

flux and temperature phase lags where the former is caused by structural interactions

such as phonon scattering and the latter is interpreted as the relaxation time due to fast-

transient effects of thermal inertia [28]. In other words, although the DPL constitutive

relation is a macroscopic formulation, it views the interactions on the microscopic level

as retarding sources causing a delayed response at the macroscopic scale. Hence, using

the DPL constitutive relation to analyze the thermal behavior with the micro/nano

structural effect should be convenient to practicing engineers.

In the past decades, due to the memorability and dependency of the fractional

calculus, it has found many practical applications in different fields of science and en-

gineering [3, 8, 16, 24, 29]. Recently, some fractional models have been successfully

applied to simulate the heat and thermal transfer in non-uniform porous medium, vis-

coelastic materials, dynamic electro-magnetic fields, etc. Sherief et al. [22] proposed

a class of fractional non-Fourier law with the concept of the fractional derivative. Re-

sults show a good agreement with experimental data when using fractional derivatives

for description of viscoelastic materials. Youssef [32] investigated another form of

fractional non-Fourier law with the concept of the fractional integral. Povstenko [20]

further studied a time-fractional Cattaneo-type equations and formulated correspond-

ing theories of thermal stresses. Yu et al. [33] developed a fractional order generalized

electro-magneto-thermo-elasticity theory for anisotropic and linearly electro-magneto-

thermo-elastic media by introducing the dynamic electro-magnetic fields. And numer-

ical results show the fractional order has great effect on the response when material

is imposed a sudden heating. Mishra [17] developed a fractional single-phase-lagging

heat conduction model by applying fractional Taylor series formula and investigated the

effect of different parameters on temperature solution. Yang and Chen [31] employed

the fractional single-phase lag heat conduction to predict both temperature distribution

around cracks and the transient fracture behaviors considering the viscoelastic mate-

rial properties, and found that the fractional single-phase lag heat conduction theory

may avoid the negative temperature predicted by the hyperbolic heat conduction dis-

appears. Chi et al. [1] built a time fractional heat conduction equation to study the

heat transfer process in coaled methane adsorption.


