
Numer. Math. Theor. Meth. Appl. Vol. 16, No. 2, pp. 410-432

doi: 10.4208/nmtma.OA-2022-0054 May 2023

An Algebraic Multigrid-Based Physical

Factorization Preconditioner for the

Multi-Group Radiation Diffusion Equations

in Three Dimensions

Xiaoqiang Yue1, Zekai Zhang1, Xiaowen Xu2, Shuying Zhai3

and Shi Shu1,*

1 National Center for Applied Mathematics in Hunan, Key Laboratory of

Intelligent Computing & Information Processing of Ministry of Education,

Hunan Key Laboratory for Computation and Simulation in Science and

Engineering, Xiangtan University, Xiangtan 411105, China.
2 Laboratory of Computational Physics, Institute of Applied Physics and

Computational Mathematics, Beijing 100094, China.
3 School of Mathematical Sciences, Huaqiao University, Quanzhou 362021,
China.

Received 30 March 2022; Accepted (in revised version) 12 October 2022

Abstract. The paper investigates the robustness and parallel scaling properties of
a novel physical factorization preconditioner with algebraic multigrid subsolves in
the iterative solution of a cell-centered finite volume discretization of the three-
dimensional multi-group radiation diffusion equations. The key idea is to take ad-
vantage of a particular kind of block factorization of the resulting system matrix and
approximate the left-hand block matrix selectively spurred by parallel processing
considerations. The spectral property of the preconditioned matrix is then analyzed.
The practical strategy is considered sequentially and in parallel. Finally, numeri-
cal results illustrate the numerical robustness, computational efficiency and parallel
strong and weak scalabilities over the real-world structured and unstructured coup-
led problems, showing its competitiveness with many existing block preconditioners.
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1. Introduction

The radiative transport model plays a momentous role in massive star formation,

optical remote sensing, inertial confinement fusion and high energy density physics.
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Targeted at simulating the computationally expensive frequency-dependent radiative

transfer in three dimensions, particular effort has been made in the past several decades

to develop mathematically less complicated yet numerically accurate approximations.

One of the simplest and most extensively used treatments is the flux-limited multi-

group diffusion approximation [24], where the associated radiation quantities are clas-

sified into a finite number of energy groups and averaged over the frequency bands.

The governing equations are a cluster of second-order highly nonlinear and discontinu-

ous parabolic partial differential equations (PDEs) with sophisticated and time-varying

couplings. This PDE system is often referred to as the multi-group radiation diffusion

(MGD) equations in a domain with many materials, whose solution exhibits multi-

ple spatio-temporal scales and wave-like propagation characteristics [8]. Hence, it is

a challenging task, despite of the enormous development around this issue in recent

years, to search for the robust, accurate and reliable solutions of the associated initial

boundary value problems with potential high stiffness.

Traditionally, operator-splitting and time-lagging techniques have been developed

to reduce the MGD equations to a series of linear scalar reaction-diffusion problems. It

is worthwhile to notice that they predigested the MGD model enough that the medium-

sized problems can be effectively solved. However, they would give rise to the demand

for unacceptably small time steps in very large-scale simulations and do not scale well

when the problem size increases, that is, their inaccuracies and unscalability prevent

solution. The fully-implicit (namely, monolithic) solution strategies for the MGD equa-

tions have been an active and promising area of research [10,11,31,42]. It is important

to point out that the fully-implicit strategy is guaranteed to converge the nonlinearity

of the transient solution at each time step [32]. For the purpose of tackling this fully-

implicit formulation, we make use of an adaptive backward Euler time-stepping scheme

to allow larger time steps without sacrificing accuracy and lessen the total number of

timesteps. The method of frozen coefficients [30] we employ is an iterative method

based on linearizing the discrete nonlinear problem about the current approximation

and then solving multiple systems of linear equations to determine the next approx-

imation. Each of these linear systems comes from a spatial discretization via a cell-

centered, locally conservative finite volume scheme with second-order experimental

accuracy over the computational grid with the number of mesh cells ranging from 106

to 1010. It must be emphasized that these linear systems are all sparse, unsymmetric

but positive definite and rather ill-conditioned. It is, therefore, natural to be the most

computation- and memory-intensive ingredient, generally making up more than 80%
of the simulation period of real-world applications, to provide their computational so-

lutions which are all obedient to certain user-specified accuracy bounds. To deal with

such a bottleneck, inefficient algorithms or efficient approaches with difficulties in de-

veloping effective parallel implementations would markedly decelerate the extremely

large simulations, forcing computational scientists to either simplify the continuous

model or tarry too long for the final results.

The existing numerical solution algorithms can be categorized into two different

types: sparse direct and iterative methods. The intrinsic appeals of sparse direct solvers,


