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Abstract. A linearized transformed L1 Galerkin finite element method (FEM) is pre-

sented for numerically solving the multi-dimensional time fractional Schrödinger

equations. Unconditionally optimal error estimates of the fully-discrete scheme are
proved. Such error estimates are obtained by combining a new discrete fractional

Grönwall inequality, the corresponding Sobolev embedding theorems and some in-
verse inequalities. While the previous unconditional convergence results are usually

obtained by using the temporal-spatial error spitting approaches. Numerical exam-

ples are presented to confirm the theoretical results.

AMS subject classifications: 34A08, 65M12, 65M60, 65N30

Key words: Optimal error estimates, time fractional Schrödinger equations, transformed L1
scheme, discrete fractional Grönwall inequality.

1. Introduction

In this paper, we propose a linearized scheme for numerically solving the following

nonlinear time fractional Schrödinger equations (TFSEs):

i∂αt u+∆u+ |u|2u = 0, (x, t) ∈ Ω × (0, T ], (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (1.3)
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where i =
√
−1, Ω ∈ R

d (d = 2, 3) is a bounded convex and smooth polygon/polyhed-

ron and u(x, t) ∈ Ω × [0, T ] is a complex function. The Caputo fractional derivative ∂αt
is denoted as

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, z)

∂z

1

(t− z)α
dz, α ∈ (0, 1),

where Γ(·) denotes the Gamma function. The TFSEs can be obtained by using a frac-

tional variational principle [25]. The TFSEs were first introduced in [26] to describe

the non-Markovian evolution of a free particle. Then Iomin [9] discussed the physi-

cal relevance of the TFSEs in quantum mechanics and found that the equations were

a particular case of the quantum comb model. Tofighi [34] considered the motion of

a particle under the influence of a real potential. More references and related applica-

tions can be seen in [18,20,35,37].

Recently, many numerical schemes have been constructed for solving the TFSEs.

In [37], Wei et al. developed an implicit fully discrete local discontinuous Galerkin

(LDG) FEM for solving the one-dimensional TFSEs. They applied the L1 finite differ-

ence scheme in time and LDG FEMs in space. The error estimate is given by considering

the linear problems. In [24], Mohebbi et al. proposed an efficient numerical scheme

by applying the meshless method in space and L1 difference scheme in time for the

TFSEs. In [2], Bhrawy et al. used a shifted Legendre collocation method in two con-

secutive steps to numerically solve one and two dimensional TFSEs when considering

the initial-boundary and non-local conditions. In [4], Esen et al. applied the quadratic

B-spline Galerkin method to solve the TFSEs. In [23], Liu et al. developed an efficient

numerical scheme by reproducing kernel theory in time and using collocation method

in the spatial direction. More details on numerical methods for the models can be found

in [5,6,36,38,39]. In these references, the convergence results were either missing or

obtained under certain spatial-temporal stepsize restrictions.

In order to remove the spatial-temporal stepsize restrictions, the temporal-spatial

error splitting argument was proposed to get the unconditionally convergent results

for inter-order PDEs in [12, 13]. Besides, some approaches by using error estimates

in certain norms and Sobolev embedding theorem were applied, see e.g., [7, 14, 32].

Recently, the temporal-spatial error splitting argument was widely used for analyzing

the time fractional problems. The earlier work can be found in [8, 16, 19], where

the unconditional convergence results were obtained by assuming that the solutions

are smooth. Taking the initial singularity into account, some researchers obtained the

unconditionally convergent results of the L1 scheme [17,29] and the Alikhanov scheme

[41] based on graded meshes, i.e.

tn = T
( n

N

)γ
, n = 1, 2, . . . , N.

The optimal convergence order of the L1 scheme [21, 31] and the Alikhanov scheme

[1,22,28] can be 2− α and 2 if

γ ≥ 2− α

α
and γ ≥ 2

α
.


