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Abstract. Physics-Informed Neural Network (PINN) represents a new approach to

solve Partial Differential Equations (PDEs). PINNs aim to solve PDEs by integrating

governing equations and the initial/boundary conditions (I/BCs) into a loss func-
tion. However, the imbalance of the loss function caused by parameter settings

usually makes it difficult for PINNs to converge, e.g. because they fall into local
optima. In other words, the presence of balanced PDE loss, initial loss and boundary

loss may be critical for the convergence. In addition, existing PINNs are not able

to reveal the hidden errors caused by non-convergent boundaries and conduction
errors caused by the PDE near the boundaries. Overall, these problems have made

PINN-based methods of limited use on practical situations. In this paper, we propose

a novel physics-informed neural network, i.e. an adaptive physics-informed neu-
ral network with a two-stage training process. Our algorithm adds spatio-temporal

coefficient and PDE balance parameter to the loss function, and solve PDEs using
a two-stage training process: pre-training and formal training. The pre-training step

ensures the convergence of boundary loss, whereas the formal training process com-

pletes the solution of PDE by balancing various loss functions. In order to verify
the performance of our method, we consider the imbalanced heat conduction and

Helmholtz equations often appearing in practical situations. The Klein-Gordon equa-

tion, which is widely used to compare performance, reveals that our method is able
to reduce the hidden errors. Experimental results confirm that our algorithm can

effectively and accurately solve models with unbalanced loss function, hidden errors
and conduction errors. The codes developed in this manuscript are publicy available

at https://github.com/callmedrcom/ATPINN.
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1. Introduction

Modeling of partial differential equations (PDEs) is an important and widely used

tool of science and engineering. In turn, methods to accurately solve PDEs are of

great significance. In complex industrial systems, such as digital twin and parallel con-

trol [24,36], PDE provides relevant models to lay the foundation of the whole process.

Currently, besides analytical methods, the solution of a PDE may be obtained by finite

difference, finite volume, and finite element methods (FEM), as well as other numerical

methods. However, in the case of repetitive simulations such as optimization, control

and real-time monitoring, FEM and other numerical methods are time-consuming and

laborious, because forward simulation needs repeatedly solving large systems of non-

linear equations.

The emergence of deep learning techniques has completely changed several re-

search fields, such as image and speech recognition [18], video processing [25], natural

language processing [54], medical imaging [21], and faul/t diagnosis [45]. In recent

years, deep learning has been applied in scientific computing. Sirignano et al. [42]

proposed the deep Galerkin method for solving high-dimensional PDE. E et al. [9] pro-

posed the deep Ritz method to solve the variational problem. Lyu et al. [29] proposed

a deep mixed residual method (MIM) to solve partial differential equations with high

order derivatives. Physics-Informed Neural Networks (PINNs) is a new algorithm for

solving differential equations which has been recently proposed [33, 34]. The train-

ing process of a PINN is done using a loss function which includes the PDE governing

equation and the I/BCs of PDE. Compared to FEM, PINN is a data-driven algorithm

and does not require a spatial or temporal mesh. In addition, it has a wide range of po-

tential applications and a simple derivation process [26]. Once the network is trained,

the solution is obtained in a faster way compared to previous numerical methods. At

present, PINN has achieved remarkable results in the field of computational science

and engineering, including computational and solid mechanics [1,10,12,35], fluid me-

chanics [4, 13, 17, 41, 53], high frequency partial differential equations [6], ordinary

differential equations [32], fault detection [38], state-space modeling [2], biomedical

science [5,8,20,51], thermodynamics [55], and design of metamaterials [7,23] among

others.

The main innovation of PINN is to exploit a residual network, which calculates

the value of the loss function with some constraints. This process encodes the PDE to

restrain the output of the neural network. PINN uses automatic differentiation for the

differential operator, while traditional methods are based on numerical differentiation.

As pointed out in previous work [3], automatic differentiation is the main advantage

of PINN, because the operators on the remaining networks can be effectively expressed

by automatic differentiation. In the prediction step, the input includes a time step


