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Abstract

In this paper, we apply local discontinuous Galerkin (LDG) methods for pattern for-

mation dynamical model in polymerizing actin flocks. There are two main difficulties in

designing effective numerical solvers. First of all, the density function is non-negative,

and zero is an unstable equilibrium solution. Therefore, negative density values may yield

blow-up solutions. To obtain positive numerical approximations, we apply the positivity-

preserving (PP) techniques. Secondly, the model may contain stiff source. The most

commonly used time integration for the PP technique is the strong-stability-preserving

Runge-Kutta method. However, for problems with stiff source, such time discretizations

may require strictly limited time step sizes, leading to large computational cost. More-

over, the stiff source any trigger spurious filament polarization, leading to wrong numerical

approximations on coarse meshes. In this paper, we combine the PP LDG methods with

the semi-implicit Runge-Kutta methods. Numerical experiments demonstrate that the

proposed method can yield accurate numerical approximations with relatively large time

steps.

Mathematics subject classification: 65M15, 65M60.

Key words: Pattern formation dynamical model, Local discontinuous Galerkin method,

Positive-preserving technique, Semi-implicit Runge-Kutta method, Stiff source.

1. Introduction

The actin, first discovered by Halliburton in 1887, forms cable-like structures called filaments

that make up most of the cell’s supporting skeleton. Actin is a kind of active polymer. Its

polymerization and depolymerization process play an important role in cell activities, such as

cell division and movement, intercellular communication, etc. In recent days, the mathematical

model of the pattern wave for the actin filaments has been investigated in [5, 9, 10]. Generally

speaking, it is divided into two steps in the process of wave formation. Small actin filaments

first aggregate into spots or spirals, and then evolve into waveforms [9, 16].
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The pattern formation dynamical model in polymerizing actin flocks reads [9, 16]:





∂ρ

∂t
= −v0∇ · (ρP) +Dρ∇

2ρ+ αρ

(
1−

ρ

ρ0

)
, (x, y) ∈ Ω, 0 < t ≤ T,

∂P

∂t
= γ

(
ρ

ρc
− 1

)
P+K∇2P− γ2|P|2P, (x, y) ∈ Ω, 0 < t ≤ T,

where Ω is a rectangular domain in R2. ρ and P denote the density and average filament

polarization of F-actin, respectively. v0 is the treadmilling speed and α is the polymerization

rate. Dρ and K are the diffusion coefficient and the effective elastic constant, respectively. γ

denotes the rate of change of the direction of F-actin filaments and γ2 guarantees saturation of

the polarization. ρc and ρ0 denote the critical density and the target polymerization density,

respectively. To facilitate analysis, we replace αt, (α/Dρ)
1/2x, ρ/ρ0, (v0/

√
Dρα)P with t, x, ρ,

P respectively, so we can rewrite the model as follows:

∂ρ

∂t
= −∇ · (ρP) +∇2ρ+ ρ (1− ρ) , (x, y) ∈ Ω, 0 < t ≤ T, (1.1a)

∂P

∂t
= Γ (rρ− 1)P+D∇2P− Γ2|P|2P, (x, y) ∈ Ω, 0 < t ≤ T, (1.1b)

where Γ = γ/α, D = K/Dρ, Γ2 = γ2Dρ/v
2
0 , r = ρ0/ρc, P = (p1, p2), and |P|2 = p21 + p22.

Moreover, for simplicity of presentation, we consider periodic boundary conditions in this paper.

The initial conditions are given as

ρ (x, y, 0) = ρ0 (x, y) , p1 (x, y, 0) = p01 (x, y) , p2 (x, y, 0) = p02 (x, y) . (1.2)

There are not too many works discussing numerical methods for the pattern formation

dynamical model. The first work in this direction was given in [9], where the authors applied

finite difference methods to simulate the pattern formation. Later, the characteristic finite

element analysis was introduced in [16]. To capture the detailed structures, such as spots,

spirals and waves, we constructed the local discontinuous Galerkin (LDG) methods for pattern

formation dynamical model and obtained the optimal error estimates in [23]. The LDG method,

as an extension of the discontinuous Galerkin (DG) method [20], was first introduced in [4] for

convection-diffusion equations, motivated by the work given by Bassi and Rebay [1]. The

main idea is to rewrite the equation with higher order derivatives into a first order system

by introducing new auxiliary variables, and then apply the DG method to the system. The

LDG method shares the same advantages of the DG method, such as good stability, high order

accuracy, and flexibility on h-p adaptivity.

Though the contributions given in [9, 16, 23] work for most of the regular cases, they may

fail to work in some special cases. In fact, there are two main difficulties in designing robust

numerical algorithms.

1. The density in (1.1a) is non-negative and zero is an unstable equilibrium. If the density in

(1.1a) is negative, then the source of (1.1a) is negative, which causes the density to deviate

from zero. Numerical experiments in Section 5 demonstrate that negative numerical

densities may yield blow-up numerical approximations. To fix this gap, we will apply the

positivity-preserving (PP) technique. In 2010, Zhang and Shu [29] first constructed the

genuinely maximum-principle-preserving (MPP) high-order DG shemes for conservation

laws on rectangular meshes. Later, the technique was successfully extended to problems


