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Abstract

Two-phase image segmentation is a fundamental task to partition an image into fore-

ground and background. In this paper, two types of nonconvex and nonsmooth regular-

ization models are proposed for basic two-phase segmentation. They extend the convex

regularization on the characteristic function on the image domain to the nonconvex case,

which are able to better obtain piecewise constant regions with neat boundaries. By analyz-

ing the proposed non-Lipschitz model, we combine the proximal alternating minimization

framework with support shrinkage and linearization strategies to design our algorithm.

This leads to two alternating strongly convex subproblems which can be easily solved.

Similarly, we present an algorithm without support shrinkage operation for the nonconvex

Lipschitz case. Using the Kurdyka- Lojasiewicz property of the objective function, we prove

that the limit point of the generated sequence is a critical point of the original nonconvex

nonsmooth problem. Numerical experiments and comparisons illustrate the effectiveness

of our method in two-phase image segmentation.
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1. Introduction

Image segmentation aims to partition an image into some disjoint but meaningful regions.

A good segmentation result can be used for many application fields such as object detection,

recognition, measurement and tracking. In the past decades, various methods have been pro-

posed to solve this problem [6,8,13,14,29–32,47,49,50,55]. Since two-phase image segmentation

is a fundamental and widely studied task, we in this paper focus on proposing nonconvex region-

based regularization models with globally convergent algorithms for segmenting an image into

a foreground and a background.

Among variational region-based segmentation methods, the most well-known model is per-

haps the following Mumford-Shah (MS) model [32]

min
g,Γ

β1

2

∫
Ω

(g(x)− f(x))
2
dx+ β2

∫
Ω\Γ
|∇g(x)|2dx+ |Γ|, (1.1)
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where Ω ⊂ R2 is a bounded open connected set, Γ is a compact curve in Ω, f : Ω → R is a

given image, β1, β2 are positive parameters, g : Ω→ R is the piecewise smooth approximation

of f . This model pursues a piecewise constant or smooth approximation g of f . Due to the

non-convexity of (1.1), it is a great challenge to find its minimizers.

A simplified variant of MS is piecewise-constant Mumford-Shah model (PCMS), which is

a fundamental case of (1.1). It assumes that f is segmented into some intensity-constant

regions [3, 7, 14, 39]. When to segment the Ω into a foreground Σ and a background Ω \ Σ, the

PCMS model becomes

min
c1,c2,Σ

β

2

(∫
Σ

(c1 − f(x))2dx+

∫
Ω\Σ

(c2 − f(x))2dx

)
+ |∂Σ|, (1.2)

where c1, c2 ∈ R are the average values of pixels inside and outside ∂Σ, and β is a positive

parameter. This model is just the CV model [14] without the area term of Σ. Earlier methods

to solve (1.2) include level set techniques [14, 27, 35]. Later, Chan et al. [7, 13] proposed the

following relaxation model

min
c1,c2,u(x)∈[0,1]

β

2

(∫
Ω

u(x)(c1 − f(x))2dx+

∫
Ω

(1− u(x))(c2 − f(x))2dx

)
+

∫
Ω

|∇u(x)|dx, (1.3)

where u is a characteristic function. Its value will approach one in the foreground and zero

in the background. The second term is total variation of u which measures the length of the

boundary. With known c1, c2, (1.3) is called a labeling problem that is completely convex,

and thresholding the solution of (1.3) with any given value in [0, 1] produces a globally optimal

solution to (1.2); see [13]. If c1, c2 are unknown, (1.3) is still a nonconvex problem, which is

difficult [7, 10,36] to handle.

By introducing edge indicator weights or high-order regularization, some modifications

in [6,21,31,50,55] were proposed. In [6,21], the authors combined total variation with edge in-

dicator functions to improve the ability of finding edges. In [55], Euler’s elastica regularization

is employed to interpolate the missing boundaries automatically without specifying regions.

In [50], the authors used the weighted first and second-order regularizers to overcome staircase

results with discontinuities and rough boundaries. In [31], a weighted wavelet frame based `1
regularization was proposed for the low contrast ultrasound image and video segmentation. It

alternately updated the characteristic function u and region constants c1, c2 and gave conver-

gence analyses of the algorithm based on Kurdyka- Lojasiewicz property.

Recently, many studies [24,26,34,45,52] indicated that nonconvex regularizations composed

of first-order information of images can yield better edge and contrast preservation in image

restoration problems. A mathematical explanation by establishing uniform lower bounds for

nonzero gradients of recovered images was provided for different nonconvex minimization mod-

els [17, 23, 33, 52, 53] in image restoration problems. Motived by these studies, [30] utilized

nonconvex TVp for labeling and segmentation with bias correction in additive image models.

They solved the nonconvex u-minimization by the alternating direction method of multipliers

(ADMM), and gave a weak convergence result only for the labeling problem. Under the two-

stage segmentation framework [8,9,49], nonconvex regularization models [11,15,22,25,48] were

proposed to produce an approximation image followed by a thresholding strategy for segmen-

tation. We note that, for the basic model (1.3), there is so far no nonconvex variants in the

literature.

To solve minimization problems with multiple blocks of variables, the alternating minimiza-

tion algorithm [1,2, 5, 7, 31, 43] is an important technique. For example, in (1.3), we can firstly


