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Abstract. In this paper, we propose a structure-preserving numerical scheme for
the size-modified Poisson-Nernst-Planck-Cahn-Hilliard (SPNPCH) equations derived

from the free energy including electrostatic energies, entropies, steric energies, and
Cahn-Hilliard mixtures. Based on the Jordan-Kinderlehrer-Otto (JKO) framework

and the Benamou-Brenier formula of quadratic Wasserstein distance, the SPNPCH

equations are transformed into a constrained optimization problem. By exploiting
the convexity of the objective function, we can prove the existence and unique-

ness of the numerical solution to the optimization problem. Mass conservation and

unconditional energy-dissipation are preserved automatically by this scheme. Fur-
thermore, by making use of the singularity of the entropy term which keeps the

concentration from approaching zero, we can ensure the positivity of concentration.
To solve the optimization problem, we apply the quasi-Newton method, which can

ensure the positivity of concentration in the iterative process. Numerical tests are

performed to confirm the anticipated accuracy and the desired physical properties
of the developed scheme. Finally, the proposed scheme can also be applied to study

the influence of ionic sizes and gradient energy coefficients on ion distribution.
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1. Introduction

The classical Poisson-Nernst-Planck (cPNP) equation is a continuum mean-field

model, which can describe the ionic transport in semiconductors, ion channels, and

electrochemical devices. The cPNP equations include the Poisson’s equation and the
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Nernst-Planck (NP) equations. The Poisson’s equation can determine the electrical po-

tential induced by the ionic concentration. According to the Fick and Kohlrausch laws,

the NP equations describe electro-diffusion and electrophoresis. Despite its usefulness

in a variety of applications, the cPNP equations show unphysical crowding of ions near

charged surfaces and incorrect dynamics of ion transport, due to the ignored steric ef-

fects of ions in its mean-field derivation. To incorporate the steric effects of ions in the

PNP model, one technique is to include the interaction energy, which can be the den-

sity functional theory [12,13,36] or the Lennard-Jones potential [9,14,16,23] for the

hard-sphere repulsions. Another technique is to add the entropy of solvent molecules

to the electrostatic free energy [17, 19, 21, 30, 35], which is known as the Borukhov

model [2]. Employing the consideration of the entropy of solvent molecules in the

free energy functional, Lu et al. [30] get a class of size-modified Poisson-Nernst-Planck

(SMPNP) equations.

In this paper, in addition to incorporating the entropy of solvent molecules in the

free energy functional, we also consider the concentration gradient energies utilized in

the Ginzburg-Landau theory to describe phase separation [10, 11]. A conserved H−1

gradient flow of the Ginzburg-Landau functional gives rise to the Cahn-Hilliard equa-

tions [3]. Therefore, the free energy arising from electrostatic energies, entropies, steric

energies, and Cahn-Hilliard mixtures leads to the following size-modified Poisson-

Nernst-Planck-Cahn-Hilliard (SPNPCH) equations:
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where cl denotes the concentration of l-th ionic species, ql denotes the valence of l-th
ionic species, vl denotes the volume of l-th ionic species, v0 denotes the volume of the

solvent molecule, σl denotes gradient energy coefficient of l-th ionic species, Ω denotes

the charged system, ψ denotes the electrostatic potential, ρf denotes the fixed charge

density, and κ and γl denote two nondimensionalized coefficients.

In the closed system, the PNP-type equations have three physical properties: total

mass conservative, the positivity of ionic concentration, and energy dissipation. Much

effort is devoted to developing the PNP-type scheme to preserve the above properties

by using finite difference method, finite volume method, and finite element method.

A finite element scheme for the PNP-type equations was developed in [31] to ensure

the positivity of ionic concentration via a variable transformation. An arbitrary-order

free energy satisfying a discontinuous Galerkin method for 1-D PNP equations was con-

structed in [28] to meet the energy dissipation law, in which the positivity of numerical

solutions is enforced by an accuracy-preserving limiter. An implicit finite difference

method for PNP equations to satisfy three physical properties was designed in [8, 15].


