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Abstract. The selection of time step plays a crucial role in improving stability and ef-
ficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws
on adaptive moving meshes that typically employs explicit stepping. A commonly
used selection of time step is a direct extension based on Courant-Friedrichs-Levy
(CFL) conditions established for fixed and uniform meshes. In this work, we provide
a mathematical justification for those time step selection strategies used in practical
adaptive DG computations. A stability analysis is presented for a moving mesh DG
method for linear scalar conservation laws. Based on the analysis, a new selection
strategy of the time step is proposed, which takes into consideration the coupling
of the α-function (that is related to the eigenvalues of the Jacobian matrix of the
flux and the mesh movement velocity) and the heights of the mesh elements. The
analysis also suggests several stable combinations of the choices of the α-function
in the numerical scheme and in the time step selection. Numerical results obtained
with a moving mesh DG method for Burgers’ and Euler equations are presented. For
comparison purpose, numerical results obtained with an error-based time step-size
selection strategy are also given.
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1. Introduction

We are concerned with the stability of the discontinuous Galerkin (DG) solution of
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conservation laws on adaptive moving meshes. The DG method is a powerful numer-

ical tool for use in the simulation of hyperbolic problems. It was first used by Reed

and Hill [31] for the steady radiation transport equation and studied theoretically by

Lesaint and Raviart [25]. The method was extended to conservation laws by Cockburn

and Shu (and their coworkers) in a series of papers [6–11]. The DG method has the

advantages of high-order accuracy, geometric flexibility, easy use with mesh adaptivity,

local data structure, high parallel efficiency, and a good foundation for theoretical anal-

ysis. The DG method has been used widely in scientific and engineering computation.

Meanwhile, conservation laws typically exhibit discontinuous structures such as shock

waves, rarefaction waves, and contact discontinuities and are amenable to mesh adap-

tation in their numerical solution to enhance numerical resolution and computational

efficiency. It is natural to combine the DG method with mesh adaptation method for

the solution of conservation laws.

A large amount of work has been done in this area. For example, Bey and Oden

[3] combined the hp-method with the DG method for conservation laws and Li and

Tang [26] solved two-dimensional conservation laws using a rezoning moving mesh

DG method where the physical variables are interpolated from the old mesh to the

new one using conservative interpolation schemes. Mackenzie and Nicola [29] solved

the Hamilton-Jacobi equation by the DG method using a moving mesh method based

on the moving mesh partial differential equation (MMPDE) strategy [21, 22]. Vilar

et al. [36] studied a DG discretization for solving the two-dimensional gas dynamics

equations in Lagrangian formulation. More recently, Uzunca et al. [35] employed a

moving mesh symmetric interior penalty Galerkin method (SIPG) to solve PDEs with

traveling waves. Luo et al. considered a quasi-Lagrange moving mesh DG method

(MMDG) for conservation laws [27] and multi-component flows [28]. Zhang et al.

studied the MMDG solution for the radiative transfer equation [38, 39] and shallow

water equations (SWEs) [40, 41]. Zhang et al. [43] develop a arbitrary Lagrangian-

Eulerian discontinuous Galerkin (ALE-DG) methods for the SWEs. Wang et al. [37]

developed a reconstructed DG Method for compressible flows in Lagrangian formula-

tion.

In principle, any marching scheme (e.g., see Hairer and Wanner [16]) can be used

for the time integration of DG computations of hyperbolic conservation laws, includ-

ing explicit and implicit Runge-Kutta methods [13, 14] and multi-step methods [32].

Nevertheless, explicit schemes have been widely used in these computations. There are

at least two considerations for this. First, as we can see later, the stability condition

for explicit schemes when applied to hyperbolic equations typically requires the time

step-size to be proportional to the minimum mesh element size, which is considered

acceptable in practical computations with a uniform mesh. Second, due to the highly

nonlinear and hyperbolic nature of conservation laws, there exists hardly any efficient

solver for nonlinear algebraic systems (whose linearization is typically non-symmetric

and non-definite, and whose solution contains discontinuity, such as shock wave) re-

sulting from the implicit temporal discretization. As such, it does not seem worth the

trouble to increase the time step-size using implicit schemes when a uniform mesh is


