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Abstract. A fast solver for nonlinear systems arising from fourth-order compact finite

difference schemes for two-dimensional semilinear Poisson equations is constructed. Ap-

plying the extrapolation and bi-quartic interpolation to two numerical solutions from the

previous two levels of grids, we determine a suitable initial guess for the Newton iter-

ations on the next finer grid. It is fifth-order accurate, which substantially reduces the

number of Newton iterations required. Moreover, an extrapolated solution of sixth-order

accuracy can be easily constructed on the whole fine grid. Numerical results suggest that

the method is much more efficient than the existing multigrid methods for semilinear

problems.
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1. Introduction

Semilinear Poisson equations appear in various fields, including fluid mechanics and

geophysics. In this work, we consider a fast solver, which allows us to efficiently obtain nu-

merical solutions of two-dimensional (2D) Poisson equations with nonlinear forcing terms.

These equations have the form

ux x + uy y = f (u, x , y), (x , y) ∈ Ω,

u(x , y) = g(x , y), (x , y) ∈ ∂Ω,
(1.1)

where Ω is a rectangle domain with the boundary ∂Ω. The Dirichlet boundary condition is

imposed on ∂Ω. Besides, the nonlinear forcing function f (u, x , y), the boundary function
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g(x , y) and the true solution u(x , y) are supposed to be continuously differentiable and

have indispensable partial derivatives. Following [19, 33], we assume that the problem

(1.1) has a unique solution.

High-order compact finite difference (FD) schemes for Poisson equation have been

widely studied [17, 19, 30, 34, 35]. The methods are called compact because the corre-

sponding discretization formulas use a minimal number of mesh points in order to achieve

the fourth-order accuracy. However, for large-scale problems, general iteration solvers are

quite time-consuming. The multigrid method [3] is a very efficient strategy for solving large

sparse systems of linear equations arising in these discretizations. Therefore, the combina-

tions of multigrid methods and high-order compact FD schemes have been also developed

[11, 13, 30, 35]. The classical multigrid technique has been applied to other equations —

e.g. to convection-diffusion equation [12, 14, 31], the biharmonic equation [1] and the

Helmholtz equation [10,28].

The CMG technique developed by Deuflhard and Bornemann [2], represents an one-

way multigrid method without any correlation between fine and coarse grids. The method

initially used a conjugate gradient (CG) solver as the relax operator on the embedded grids,

whereas the initial values of the smoother on the current grids have been approximated

by the linear interpolation on the previous grids. For the energy norm, Bornemann and

Deuflhard [2] showed that this is an optimal iterative method. We note that the Richardson

extrapolation often used to increase the accuracy of numerical solutions, have been initially

employed the coarse grids only. In 1993, Roache and Knupp [25] generalized the strategy

and obtained extrapolated solutions at the middle of the fine grid points. This is similar to

the mid-point extrapolation formula proposed by Chen and Lin [5].

In the past decade, a CMG method has been combined with extrapolation strategies.

Thus Chen et al. [4] developed an EXCMG method for fast solution of second-order elliptic

problems. Besides, an EXCMG method employing high-order compact FD schemes for 2D

Poisson equations have been studied in [6, 15, 21]. Pan et al. [22] applied the EXCMG

method to 3D elliptic boundary value problems. In order to reduce computational time, Dai

et al. [7] developed an approximation method, where EXCMG has been used for finding

a better initial guess in the MSMG method. Recently, Pan et al. [23, 24] applied a fast

cell-centered EXCMG (CEXCMG) algorithm based on finite volume (FV) discretization to

2D/3D anisotropic diffusion equations with discontinuous coefficients.

Although for linear problems the EXCMG methods are thoroughly studied, there are

only a few works devoted to nonlinear problems. As far as the MG method is concerned, the

investigations are mainly focused on Newton-MG methods [3], adaptive MG methods [32]

and CMG methods [27,29,33]. In particular, for solving large nonlinear systems arising in

the fourth-order compact FD discretization of the 2D semilinear Poisson equation, Li and

Pan [16] proposed a Newton-MSMG method such that the corresponding extrapolation

solutions can achieve the sixth-order approximation accuracy, which is much greater than

the discretization-level.

The main purpose of this work is to construct and analyze a fast EXCMG-Newton method

for the nonlinear system arising in fourth-order compact FD schemes for the 2D semilin-

ear Poisson equation. Using the extrapolation and bi-quartic polynomial interpolation on


