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Abstract

This paper continues to study the explicit two-stage fourth-order accurate time dis-

cretizations [5, 7]. By introducing variable weights, we propose a class of more gener-

al explicit one-step two-stage time discretizations, which are different from the existing

methods, e.g. the Euler methods, Runge-Kutta methods, and multistage multiderivative

methods etc. We study the absolute stability, the stability interval, and the intersection

between the imaginary axis and the absolute stability region. Our results show that our

two-stage time discretizations can be fourth-order accurate conditionally, the absolute sta-

bility region of the proposed methods with some special choices of the variable weights

can be larger than that of the classical explicit fourth- or fifth-order Runge-Kutta method,

and the interval of absolute stability can be almost twice as much as the latter. Several

numerical experiments are carried out to demonstrate the performance and accuracy as

well as the stability of our proposed methods.
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1. Introduction

The explicit two-stage fourth-order accurate time discretizations are studied in [5, 7] and

successfully applied to the nonlinear hyperbolic conservation laws. They belong to the two-

derivative Runge-Kutta methods, see [1,3,6]. In comparison with the explicit four-stage fourth-

order accurate Runge-Kutta method, they only call the time-consuming exact or approximate

Riemann solver and the initial reconstruction with the characteristic decomposition twice at

each time step, which is half of the former.

For the sake of simplicity, let us consider the initial-value problem of the first-order ordinary

differential equation (ODE)

u′(t) = L(t, u), t ∈ [0, T ]; u(0) = u0, (1.1)
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where u is scalar and L(t, u) is linear or nonlinear with respect to u. Assume that the solution

u of (1.1) is a sufficiently smooth function of t and L is also smooth, and give a partition of the

time interval by tn+1 = tn + τ , n ∈ Z+ ∪ {0}, where τ denotes the time step-size. The Taylor

series expansion of u in t reads

un+1 =
(
u+ τ

du

dt
+
τ2

2!

d2u

dt2
+
τ3

3!

d3u

dt3
+
τ4

4!

d4u

dt4

)n
+O(τ5)

=
(
u+ τL(t, u) +

ατ2

2
DtL(t, u)

)n
+

(1− α)τ2

2

(
d2

dt2

(
u+

τ

3(1− α)
L(t, u) +

τ2

12(1− α)
DtL(t, u)

))n
+O(τ5), (1.2)

where Dt = ∂t + L∂u and α does not depend on t, u.

Based on the additive decomposition (1.2) with α = 1/3, the explicit two-stage fourth-order

time-accurate discretization [5] can be implemented as follows

u∗ = un +
τ

2
L(tn, un) +

τ2

8
(DtL)(tn, un),

un+1 = un + τL(tn, un) +
τ2

6

[
(DtL)(tn, un) + 2(DtL)(tn + τ/2, u∗)

]
,

(1.3)

which can also be found in [3, Section 3], [1, Section 3.2] and [6, Section 1]. For a general choice

of α that α = α(τ̂) is a differentiable function of τ̂ = τp, p ≥ 1, and satisfies α = 1/3 + O(τ̂)

and α 6= 1, the general two-stage fourth-order time-accurate discretization [7] can be given as

follows

u∗ = un +
τ

3(1− α)
L(tn, un) +

τ2

12(1− α)
(DtL)(tn, un),

un+1 = un + τL(tn, un) +
τ2

2

[
α(DtL)(tn, un) + (1− α)(DtL)

(
tn +

τ

3(1− α)
, u∗
)]

,

(1.4)

which are not mentioned in the literature. If applying methods (1.3) and (1.4) to the model

problem u′(t) = λu(t) and taking θ and z as un+1/un and τλ, respectively, then we can directly

obtain their stability polynomial

π(θ, z) = θ −
(

1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4
)
,

with a single root θ1 = 1 + z + 1
2z

2 + 1
6z

3 + 1
24z

4, which is exactly the same as that of the

(classical) explicit four-stage fourth-order accurate Runge-Kutta method. For the absolute

stability [2, 4], one requires

|θ1| ≤ 1, i.e.

∣∣∣∣1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4
∣∣∣∣ ≤ 1.

It is worth noting that there exist some examples of inequivalent definitions of the region of

absolute stability of a numerical method for ODEs in the literature1) .

Does there exist any explicit two-stage fourth-order accurate time discretization with a larger

region of absolute stability? The aim of this paper is to answer this question and to propose

1) http://vmm.math.uci.edu/ODEandCM/StabiltyRegionDefinitions/StabilityRegionDefinitions.html


