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Abstract

This paper aims to study a second-order semi-implicit BDF finite element scheme for

the Kuramoto-Tsuzuki equations in two dimensional and three dimensional spaces. The

proposed scheme is stable and the nonlinear term is linearized by the extrapolation tech-

nique. Moreover, we prove that the error estimate in L2-norm is unconditionally optimal

which means that there has not any restriction on the time step and the mesh size. Finally,

numerical results are displayed to illustrate our theoretical analysis.
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1. Introduction

In this paper, we will study the unconditionally optimal error estimates of the second-order

BDF finite element scheme for the following Kuramoto-Tsuzuki equation:

ut = (1 + ic1)∆u+ u− (1 + ic2)|u|2u, in Ω× (0, T ] (1.1)

for some T > 0, where i =
√
−1, and Ω ⊂ Rd is a bounded and convex polygon (d = 2) or

polyhedron (d = 3) domain. In (1.1), the unknown u and the initial value u0 are complex value

functions, and c1, c2 are real constants. To ensure the well-posedness of the solution to the

Kuramoto-Tsuzuki equation (1.1), the proper initial and boundary conditions are needed. For

the sake of simplicity, we consider the following initial condition

u(x, 0) = u0(x), in Ω, (1.2)

and the homogeneous Dirichlet boundary condition

u = 0, on ∂Ω× (0, T ]. (1.3)

The Kuramoto-Tsuzuki equation describes the behavior of many two-component systems in a

neighborhood of the bifurcation point [7] and can be viewed as a special case of the Ginzburg-

Landau equations in the theory of superconductivity [6].

It is clear that the Kuramoto-Tsuzuki equation is a nonlinear parabolic equation and the an-

alytic solution can not be solved from (1.1)–(1.3) directly. Numerical methods for the numerical
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simulations of the Kuramoto-Tsuzuki equation have been developed by many scholars. We first

describe some works for the one dimensional Kuramoto-Tsuzuki equation. Tsertsvadze in [21]

proposed a nonlinear Crank-Nicolson finite difference scheme and derived the convergence rate

of order O(h3/2) in the discrete L2-norm under the constraint τ = O(h2+δ) for some δ > 0,

where τ and h denote the time step size and the mesh size, respectively. The second-order con-

vergence rate of order O(τ2 + h2) in L∞-norm for Tsertsvadze’s difference scheme was proved

by Sun without any constraint on the time step size and the mesh size [20]. Another nonlinear

Crank-Nicolson finite difference scheme was studied in [25], where the optimal second-order con-

vergence rate was proved. Based upon the linear extrapolation, a semi-implicit Crank-Nicolson

finite element scheme was proposed and studied by Omrani in [16]. Other different numerical

schemes for the one dimensional Kuramoto-Tsuzuki equation can be found in [5, 8, 18, 19, 24]

and references cited therein.

Now we turn back to the high dimensional problem. In the last several decades, numerous

effort has been devoted to the development of efficient numerical methods for the nonlinear

parabolic problems which arise from a variety of physical and industrial applications. In de-

signing numerical schemes, a key issue is the time step condition. Usually, fully implicit schemes

are unconditionally stable, but one has to solve a nonlinear system by some iteration method

at each time step, which results in the time consumption, especially for 3D problems. Explicit

schemes are much easy in computation. But there has a very restricted time step condition

for the convergence of numerical solutions. A popular and widely-used method is a linearized

semi-implicit scheme, such as the first-order semi-implicit Euler scheme, and the second-order

semi-implicit Crank-Nicolson or BDF scheme based upon the linear extrapolation. To study the

error estimate of the semi-implicit scheme, the boundedness of numerical solutions in L∞-norm

are often required. One can use the induction method with inverse inequality to bound it, such

as

‖Unh ‖L∞ ≤ ‖Rhun‖L∞ + ‖Rhun − Unh ‖L∞

≤ ‖Rhun‖L∞ + Ch−d/2‖Rhun − Unh ‖L2

≤ ‖Rhun‖L∞ + Ch−d/2(τp + hr+1), (1.4)

where un and Unh are the exact solution and numerical solution, respectively, Rh is the classical

Ritz projection operator, and p and r + 1 are the convergence rates in temporal and spatial

directions, respectively. The estimate (1.4) results in a time step constraint on the mesh size.

We notice that such analysis method has been widely used in the error estimates of fully

discrete schemes for many different nonlinear parabolic problems until [11, 12], in which the

unconditionally optimal error estimate without the above time step constraint was proved by

using a technique of error splitting, i.e., the error is splitted into the temporal error, the spatial

error and the projection error by introducing a corresponding time-discrete parabolic system

(or elliptic system). This technique has been successfully applied to some semi-implicit schemes

for nonlinear parabolic problems and the unconditionally optimal error estimates in L2-norm

were proved, such as the nonlinear thermistor equation [10], the Landau-Lifshitz equation [1,3],

the nonlinear Schrödinger equation [14,22], the miscible displacement in porous media [23] and

other strongly nonlinear parabolic problems [13, 15]. Besides the technique of error splitting,

another way to prove the unconditionally optimal error estimate was proposed for the Crank-

Nicolson difference scheme for a coupled nonlinear Schrödinger system in [17], where the optimal

error estimate in the discrete L2-norm were derived for τ ≤ h and τ > h, respectively, then

the unconditionally optimal convergence rate was proved. Based upon this approach in [17],


