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Abstract. Symmetric tensor decomposition is of great importance in applica-
tions. Several studies have employed a greedy approach, where the main idea is
to first find a best rank-one approximation of a given tensor, and then repeat
the process to the residual tensor by subtracting the rank-one component. In
this paper, we focus on finding a best rank-one approximation of a given or-
thogonally order-3 symmetric tensor. We give a geometric landscape analysis
of a nonconvex optimization for the best rank-one approximation of orthogo-
nally symmetric tensors. We show that any local minimizer must be a factor in
this orthogonally symmetric tensor decomposition, and any other critical points
are linear combinations of the factors. Then, we propose a gradient descent
algorithm with a carefully designed initialization to solve this nonconvex op-
timization problem, and we prove that the algorithm converges to the global
minimum with high probability for orthogonal decomposable tensors. This re-
sult, combined with the landscape analysis, reveals that the greedy algorithm
will get the tensor CP low-rank decomposition. Numerical results are provided
to verify our theoretical results.
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1 Introduction

Tensor decomposition can be viewed as an extension of the singular value decom-
position (SVD) for matrices, which is obviously one of the fundamental tools in
numerous applications. Unlike for matrices, the term “decomposition” for tensors
can carry very different meanings in different studies. In this paper we focus on one
of the most commonly used notions of tensor decomposition: the canonical polyadic
decomposition (CP decomposition, or CPD).

Before going further we first introduce some notations. Let A be a tensor, which
is an element of

⊗m
j=1Rnj :=Rn1×n2×···×nm . A rank-one tensor A in

⊗m
j=1Rnj has

the form

A=
m∏
k=1

vk :=v1⊗v2⊗···⊗vm,

namely [A]j1j2···jm=v1j1v2j2 ···vmjm . For simplicity we use j to denote the multi-index
j := (j1,j2,··· ,jm), and [A]j to denote the j-th entry of A. Given a general tensor
A∈

⊗m
j=1Rnj , a CP decomposition (CPD) of A is to decompose it into sum of rank-

one tensors, A=A1+A2+···+Ar, where each Ai, i= 1,··· ,r is a rank-one tensor.
The minimal r is called the CP rank of A. A major problem in tensor decomposition
is to compute the CP rank and the CP decomposition of a tensor.

A particularly important class of tensors are the so-called super symmetric ten-
sors, or simply symmetric tensors. A tensor A∈

⊗mRn is called a symmetric tensor
if for any multi-index j∈{1,2,··· ,n}m and any permutation i of j we have [A]i=[A]j.
It is easy to see that a rank-one symmetric tensor A must have the form

A=λv⊗m :=λv⊗···⊗v︸ ︷︷ ︸
m

,

where v∈Rn and λ∈R are both nonzero. For a general symmetric tensor A, a
symmetric CP decomposition (symmetric CPD) is

A=A1+A2+···+Ar,

where each Ai, i=1,··· ,r is a symmetric rank-one tensor. The minimal r is called
the symmetric CP rank of A. Like general tensor decomposition, symmetric CP
decomposition of a symmetric tensor is a major (and challenging) problem in the
study of tensors. Although finding the symmetric CP rank of a symmetric ten-
sor and its symmetric CP decomposition are generally very challenging, they are
very useful in applications. For example, symmetric tensors appear as higher order
derivatives or moments and cumulants of random vectors, which are often used in
source extraction, mobile communications, machine learning, factor analysis of m-
way arrays, biomedical engineering, psychometrics, and chemometrics [4,6–9,16,25].


