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Abstract. A new penalty-free neural network method, PFNN-2, is presented for solv-
ing partial differential equations, which is a subsequent improvement of our previ-
ously proposed PFNN method [1]. PFNN-2 inherits all advantages of PFNN in han-
dling the smoothness constraints and essential boundary conditions of self-adjoint
problems with complex geometries, and extends the application to a broader range
of non-self-adjoint time-dependent differential equations. In addition, PFNN-2 intro-
duces an overlapping domain decomposition strategy to substantially improve the
training efficiency without sacrificing accuracy. Experiments results on a series of
partial differential equations are reported, which demonstrate that PFNN-2 can out-
perform state-of-the-art neural network methods in various aspects such as numerical
accuracy, convergence speed, and parallel scalability.
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1 Introduction

In recent years, neural network methods are becoming an attractive alternative for solv-
ing partial differential equations (PDEs) arising from applications such as fluid dynam-
ics [2–4], quantum mechanics [5–7], molecular dynamics [8], material sciences [9] and
geophysics [10,11]. In contrast to most traditional numerical approaches, methods based
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on neural networks are naturally meshfree and intrinsically nonlinear therefore can be
applied without going through the cumbersome step of mesh generation and could be
more potentially applicable to complicated nonlinear problems. These advantages have
enabled neural network methods to draw increasingly more attention with both early
studies using shallow neural networks [12–18] and recent works with the advent of deep
learning technology [5, 19–25].

Despite of the tremendous efforts to improve the performance of neural network
methods for solving PDEs, there are still issues that require further study. The first is-
sue is related to the accuracy of neural network methods. It is still not fully understood
how well a neural network can approximate the solution of a PDE in either theory or
practice. Recent investigations were carried out to reveal some preliminary approxima-
tion properties of neural networks for simplified problems [26–29], or to improve the
accuracy of neural network methods from various aspects such as by introducing weak
form loss functions to relax the smoothness constraints [21, 30–34], by modifying the so-
lution structure to automatically satisfy the initial-boundary conditions [15,17,18,35,36],
by revising the network structure to enhance its representative capability [37–40], and by
introducing advanced sampling strategies to reduce the statistical error [41, 42]. These
improvements so far are usually effective in respective situations, but are not general
enough to adapt with different types of PDEs defined on complex geometries.

Another difficulty for solving PDEs with neural network methods is related to the
efficiency. It is widely known that training a neural network is usually much more costly
than solving a linear system resulted from a traditional discretization of the PDE [43–45].
To improve the efficiency, it is natural and has been extensively considered [4,46] to utilize
distributed training techniques [47, 48] based on data or model parallelism, by which
the training task is split into a number of small sub-tasks according to the partitioned
datasets or model parameters so that multiple processors can be exploited. Although
this distributed training is general and successful in handling many machine learning
tasks [49–52], it is not the most effective choice for solving PDEs because no specific
knowledge of the original problem is adopted throughout the training process.

Inspired by the idea of classical domain decomposition methods [53], it was pro-
posed to introduce domain decomposition strategies into neural network based PDE
solvers [54–62] by dividing the learning task into training a series of sub-networks re-
lated to solutions on sub-domains. This tends to be more natural than the plain dis-
tributed training approaches because by introducing domain decomposition the training
of each sub-network only requires a small part of dataset related to the corresponding
sub-domain, therefore can significantly decrease the computational cost. However, these
methods may still suffer from issues related to low convergence speed and poor paral-
lel scalability due in large part to the straightforward treatment of artificial sub-domain
boundaries.

In this paper, we present PFNN-2, a new penalty-free neural network method that
is a subsequent improvement of our previously proposed PFNN method [1]. Inheriting
all advantages of PFNN in handling the smoothness constraints and essential bound-


