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Abstract. In this paper, we develop a residual-based a posteriori error estimator for
the time-dependent Maxwell’s equations in the cold plasma. Here we consider a
semi-discrete interior penalty discontinuous Galerkin (DG) method for solving the
governing equations. We provide both the upper bound and lower bound analysis
for the error estimator. This is the first posteriori error analysis carried out for the
Maxwell’s equations in dispersive media.
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1 Introduction

Dispersive electromagnetic media are those materials with wavelength dependent
physical parameters (such as permittivity). Examples of dispersive media include
human tissue, soil, snow, ice, plasma, optical fibers and radar-absorbing materials.
Hence, the study of wave interaction with dispersive media is very important to our
daily life.

In recent years, there is a growing interest in the finite element modeling and anal-
ysis of Maxwell’s equations (see books [10, 17, 30] and references cited therein). How-
ever, most work is restricted to the discussion of simple medium such as air in the free
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space. Work on dispersive media is still very limited. In 2001, Jiao and Jin [22] initi-
ated the application of time-domain finite element method (TDFEM) for the dispersive
media. Then in 2004, Lu et al. [28] developed a discontinuous Galerkin (DG) method
for solving Maxwell’s equations in dispersive media. In 2005, Banks and Browning [5]
considered a Debye medium problem solved by finite element method. Unfortunately,
no any error analysis has been carried out for Maxwell’s equations in dispersive me-
dia. Since 2006, we carried out some a priori error analysis of TDFEM for dispersive
media [21, 23–27]. In this paper, we initiate our effort on developing a posteriori error
estimation for Maxwell’s equations in dispersive media. For simplicity, we only con-
sider the cold plasma model in this paper. Analysis of other dispersive media can be
carried out similarly.

A posteriori error estimation plays an important role in adaptive finite element
methods (FEMs), and the literature on this is vast (see books [1,3,4,34], reviews [11,13]
and references cited therein). However, to our best knowledge, there are only dozens
of papers devoted to the study of posteriori error estimation for Maxwell’s equations
[6–9,16,19,20,29,32,35]. No any paper has discussed the posteriori error estimation for
dispersive media yet. Here we want to fill the gap by carrying out the first posteriori
error analysis for the Maxwell’s equations in dispersive media.

The governing equations that describe electromagnetic wave propagation in isotropic
nonmagnetized cold electron plasma are [25]

ǫ0Ett +∇× (µ−1
0 ∇× E) + ǫ0ω2

pE − νJ(E) = 0, (1.1)

where E is the electric field, ǫ0 is the permittivity of free space, µ0 is the permeability of
free space, ωp is the plasma frequency, ν ≥ 0 is the electron-neutral collision frequency,
and the polarization current density J is represented as

J(x, t; E) ≡ J(E) = ǫ0ω2
p

∫ t

0
e−ν(t−s)E(x, s)ds. (1.2)

Moreover, we assume that the boundary of Ω is a perfect conductor so that

n × E = 0 on ∂Ω × (0, T), (1.3)

where n denotes the unit outward normal of ∂Ω. Furthermore, we assume that the
initial conditions for (1.1) are given as

E(x, 0) = E0(x) and Et(x, 0) = E1(x), (1.4)

where E0(x) and E1(x) are some given functions.
The rest of the paper is organized as follows. In Section 2, we describe the semi-

discrete DG formulation for the plasma model. In Section 3, we construct our a poste-
riori error estimator and present the main result. Detailed proof of the error estimator
is given in Section 3.1. Here we adopted many ideas and techniques from [20] orig-
inally developed for Maxwell’s equations in the simple medium. Then in Section 4,
we prove some lower bounds for the local error estimators. We conclude the paper
in Section 5. In this paper, C (sometimes with subindex) denotes a generic constant
which is independent of both the time step τ and the finite element mesh size h.


