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Preface

Special Issues on Nonlocal Modeling, Analysis, and Computation

Nonlocal models have been established as extremely powerful modeling tools. The

nonlocal operators involved in those models have shown excellent capability to describe

the effects of long-range interactions in space and historical memories in time, see

e.g., [3,14,18,43]. The spectrum of their practical applications is very broad and spans

many diverse disciplines, e.g., fracture mechanics, subsurface flow, image processing,

data analysis, thermal diffusion in fractal domains, and dynamics of protein molecules.

Compared with classical local partial differential equations (PDE), nonlocal models

pose substantial challenges to both their theory and numerical analysis. In the last two

decades, intensive research has been carried out in this area. See [1,4,9,14,17–19,29,

31,41,53] for a rather incomplete list of monographs and review papers.

This special issue consists of thirteen invited contributions on various aspects of

nonlocal models. These papers cover a broad range of topics including theoretical

analysis of novel nonlocal models, construction of computational schemes, stability and

error analysis, and numerical simulations and validations. Below we briefly describe

the content of the special issue.

The papers [15,23,27] present mathematical analysis of some novel nonlocal mod-

els. In [15], the authors study an anisotropic nonlocal diffusion model, where the

nonlocal diffusion operator involves an anisotropic tensor. The wellposedness of the

model is proved by establishing an equivalence between weighted and unweighted

anisotropic nonlocal diffusion operators. This paper extends the nonlocal calculus de-

veloped in early works [16,19,20]. Moreover, the authors also extend the argument to

the anisotropic diffusion-advection equation describing anomalous transport of solutes.

Nonlocal Stokes equations with periodic boundary conditions were developed and

analyzed in pioneer works [24,33]. The paper [23] introduces a novel nonlocal Stokes

system with a physical no-slip boundary condition. Such a kind of Dirichlet type bound-

ary condition is enforced by using the idea of volume constraint. With an additional

nonlocal relaxation term, which disappears as the nonlocality vanishes, the stability

and well-posedness are proved where smooth kernel functions are used to define the

nonlocal operators. Moreover, the authors show that the vanishing nonlocality limit of

the solution to the nonlocal system is that to the classical Stokes system.

The Gierer-Meinhardt model [27] is a prototypical activator-inhibitor reaction-diffu-

sion system [54]. While the original model has assumed a normal diffusion process,

a growing body of literature has considered the alternative of anomalous diffusion
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which may be better suited for biological processes in complex environments. The pa-

per [28] deals with a one-dimensional Gierer–Meinhardt model involving a fractional

Laplacian with periodic boundary conditions. The existence and stability of multi-spike

solutions are rigorously examined by using a Lyapunov-Schmidt type reduction and the

method of matched asymptotic expansions.

The papers [2, 5, 35, 57] deal with the numerical treatment for nonlocal-in-space

models. In particular, a dual-horizon nonlocal diffusion model is considered in [2]. In

such a model, the influence area at each point consists of a standard sphere horizon

and an irregular dual horizon whose geometry is determined by the distribution of the

varying horizon parameter. The well-posedness as well as some useful properties, such

as mass conservation and maximum principle, are theoretically examined. The authors

propose a Galerkin finite element discretization, which is known to be asymptotically

compatible [51, 52], and introduce its implementation in details. Various numerical

experiments in high dimensions are presented to illustrate the usage of the variable

horizon and demonstrate the convergence of the numerical scheme.

On bounded domains, the spectral fractional Laplace equation can be solved ef-

ficiently via Balakrishnan integral together with suitable quadrature rules [6–8]. The

paper [5] presents an numerical scheme for solving spectral fractional Laplace-Beltrami

problems on a closed surface. The proposed algorithm relies on the aforementioned in-

tegral representation and applies a SINC quadrature coupled with standard Galerkin

finite element methods for parametric surfaces. Optimal convergence rates (up to a log

factor) are derived analytically and observed numerically in L2 and H1.

The papers [35, 57] study spectral methods for nonlocal models. Since the solu-

tions to nonlocal problems usually contain weak singularities even for smooth problem

data, the classical spectral methods using polynomials generally do not work well. One

promising idea is to use nonpolynomial basis functions [11,56]. The paper [57] devel-

oped and analyzed a hybrid spectral method for nonlinear Volterra integral equations

(with a weakly singular kernel) of the second kind. The key idea is to use the shifted

generalized Log orthogonal functions [10,12] as the basis in the boundary intervals.

Nonlocal diffusion equations in unbounded domains attract a lot of attention in

recent years [42,45,48,50]. The paper [35] develops and analyzes an efficient Hermite

spectral-Galerkin method for solving the nonlocal diffusion equations in R
d with d =

1, 2. The use of Hermite functions can analytically de-convolute the inner integral, and

the singularity of the kernel functions can be absorbed in the computation. Detailed

implementation, rigorous error analysis and numerical examples are provided.

The list of applications of nonlocal operators is ever increasing. The paper [44]

develops a novel edge detection method of the grayscale image, by using a nonlo-

cal Laplacian operator. This novel strategy is applied to setup the initial value of an

Allen-Cahn equation. Then the two-phase segmentation of the grayscale image could

be obtained by solving the Allen-Cahn equation with exponential time differencing

schemes [21,22]. The authors demonstrate the effectiveness and efficiency of the pro-

posed method by plenty of numerical experiments.

The papers [13,34,36,39,46] deal with the nonlocal models involving a fractional-
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order derivative in time. In particular, the papers [34, 39, 46] discuss the piecewise

linear polynomial interpolation method, so-called L1 scheme, for the time discretiza-

tion. The L1 scheme is one of the most popular schemes for time-fractional models,

and there have been several numerical analyses under different conditions about the

solution or problem data [30,32,37,40,47,55]. The paper [39] analyzes the L1 scheme

with variable time step sizes for time-fractional Allen-Cahn equations [25,49] by using

the fractional Gronwall’s inequality [38]. An adaptive time-stepping strategy according

to the dynamical feature of the system is presented to capture the multi-scale behav-

iors and to improve the computational performance. The paper [34] considers the

time-fractional Stokes equation and its numerical treatment. The L1 scheme is used to

discretize the time fractional derivative and the local discontinuous Galerkin method

is used to discretize in space. A suboptimal error estimate is established under some

conditions on the solution regularity. The paper [46] provides a comprehensive survey

on the recent progress of the error analysis for the L1 scheme and its variants. Various

aspects of these numerical analyses are outlined in [46], such as global and local con-

vergence estimate, fast algorithm, semilinear problems, multi-term time derivatives,

α-robustness and a posteriori error analysis.

Random effects arise naturally in physical systems. The paper [36] studies a semi-

linear stochastic space-time fractional wave equations driven by infinite dimensional

multiplicative Gaussian noise and additive fractional Gaussian noise. The discretiza-

tion of random noise results in a regularized stochastic fractional wave equation while

introducing a modeling error in the mean-square sense. The solution theories of the

regularized equation is established and Galerkin finite element approximation is devel-

oped with a rigorous error analysis.

Spectral deferred correction (SDC) method was first introduced in [26] to construct

high-order stable methods for solving ordinary differential equations. The paper [13]

discusses the SDC method for solving fractional ordinary differential equations. In

particular, the SDC method is used to discretize the fractional derivative, and conver-

gence of the SDC iteration is accelerated by applying the generalized minimal residual

(GMRES) algorithm with restart. The authors demonstrate the effectiveness of the pro-

posed method by presenting plenty of numerical examples for both stiff and non-stiff

fractional models.

Last, we would like to thank the managing editors and editorial office of NMTMA

for the strong support on the publication of the special issue. We also wish to express

our appreciation to the authors of all articles in this special issue for the excellent con-

tributions as well as the reviewers for their careful work on refereeing the manuscripts.
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