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Abstract. Recently, physics-driven deep learning methods have shown particular
promise for the prediction of physical fields, especially to reduce the dependency on
large amounts of pre-computed training data. In this work, we target the physics-
driven learning of complex flow fields with high resolutions. We propose the use of
Convolutional neural networks (CNN) based U-net architectures to efficiently represent
and reconstruct the input and output fields, respectively. By introducing Navier-Stokes
equations and boundary conditions into loss functions, the physics-driven CNN is de-
signed to predict corresponding steady flow fields directly. In particular, this prevents
many of the difficulties associated with approaches employing fully connected neural
networks. Several numerical experiments are conducted to investigate the behavior
of the CNN approach, and the results indicate that a first-order accuracy has been
achieved. Specifically for the case of a flow around a cylinder, different flow regimes
can be learned and the adhered “twin-vortices” are predicted correctly. The numer-
ical results also show that the training for multiple cases is accelerated significantly,
especially for the difficult cases at low Reynolds numbers, and when limited reference
solutions are used as supplementary learning targets.
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1 Introduction

In some practical fluid mechanics problems such as real-time or frequent query analysis, a
large number of solutions for different initial/boundary condition combinations are to be
considered [1–3]. For the traditional discrete analysis, numerical simulations have to be
conducted repeatedly and the computational cost quickly becomes overly expensive [4].
In contrast to classical computational methods, machine learning approaches, and espe-
cially the field of deep learning that employs Neural Networks (NN), have demonstrated
their capabilities to predict flow fields rapidly and accurately [5–7].

The previous research on flow field prediction using NN is mainly focused on data-
driven methods. Besides the indirect way using closure model [8, 9], the field solution
can also be directly obtained from the network trained with a large number of sam-
ples [10, 11]. However, for complex flows in practical engineering problems, the train-
ing samples very often require extraction, pre-processing and may be hard to obtain [12].
Some data-driven learning work utilizes Computational Fluid Dynamics (CFD) approach
to generate the data sets [13–15], and it does not really solve the demand of avoiding the
big computational cost of discrete methods.

In order to remedy the above-mentioned shortcomings, physics-driven methods are
a relatively new development. By providing physics information, NN are able to directly
obtain the field solution with much less or even no training data. Based on Multi-layer
Perceptron (MLP) [16], Raissi et al. designed a Physics Informed Neural Networks (PINN). By
the constraint of loss function employing Partial Differential Equations (PDEs), the outputs
gradually approach the ones obeying the physics laws [17–19]. However, due to the full
connectivity between the neurons, MLP suffer from extensive memory requirements and
statistical inefficiencies [20]. Therefore, it is difficult to handle well the multi-dimensional
learning space with high-resolution physics fields containing much more details. Taking
the highest resolution solution in Ref. [21] as an example, the MLP with one single tem-
perature channel has over 1 million weights. In addition, there are attempts [22] to build
surrogates to predict the physics solutions for more complex fluid dynamics problems
with parameterized fluid properties and objective geometries. Again, these parametric
variables constitute a high dimensional input space and prevents to establish an accurate
map for evaluating the corresponding flow fields. One avenue for alleviating this prob-
lem is to employ the reduced-order modeling to compress and reconstruct the flow fields
apart from training the network [10,23]. However, this operation not only is complicated
but also may introduce additional errors from the projection onto reduced space [24]. In
addition, MLP architecture by itself does not take into account the spatial structure of
data. The data points in the learning domain irrespective of their distance are treated
in a same way [25]. However, the physics laws represented with PDEs are based on the
localities of data points, which suggests that the capability of NN to reflect this spatial
relationship can be very important, especially for the physics-driven methods which are
constrained only by PDEs.

On the other hand, Convolutional Neural Networks (CNN) represent a specialized and


