A New Method for Computing the Expected Hitting Time between Arbitrary Different Configurations of the Multiple-Urn Ehrenfest Model

Sai Song ${ }^{1}$ and Qiang Yao ${ }^{1,2, *}$
${ }^{1}$ Key Laboratory of Advanced Theory and Application in Statistics and Data ScienceMOE, School of Statistics, East China Normal University, Shanghai 200062, China;
${ }^{2}$ NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai 200062, China

Received September 7, 2019; Accepted December 22, 2021;
Published online August 31, 2022.

Abstract

We study a multiple-urn version of the Ehrenfest model. In this setting, we denote the n urns by Urn 1 to $\operatorname{Urn} n$, where $n \geq 2$. Initially, M balls are randomly placed in the n urns. At each subsequent step, a ball is selected and put into the other $n-1$ urns with equal probability. The expected hitting time leading to a change of the M balls' status is computed using the method of stopping times. As a corollary, we obtain the expected hitting time of moving all the M balls from Urn 1 to Urn 2.

AMS subject classifications: 60C05, 60J10
Key words: Ehrenfest urn model, Markov chain, random walk, hitting time.

1 Introduction

We extend the classical two-urn Ehrenfest model to the multiple-urn case. Label the n urns by Urn 1 to Urn n, where $n \geq 2$. At the beginning, M balls are arbitrarily placed in the n urns. Then at each time, one ball is chosen at random, taken from the current urn it resides in, and placed in one of the other $n-1$ urns with equal probability. This model can be treated as a symmetric simple random walk on the graph $G_{M}=\left(V_{M}, E_{M}\right)$, where $V_{M}=\{1, \cdots, n\}^{M}$, and E contains edges connecting two vertices in V_{M} if exactly one of their components differs. Here the subscript " M " is to stress that the number of balls is M. Therefore, G_{M} is a transitive graph (that is, for any $e, e^{\prime} \in E_{M}$, there is an automorphism of the graph that takes e to e^{\prime}) with n^{M} vertices, and each vertex has common degree $(n-1) M$. Strictly speaking, if we let $X_{t}=\left(X_{t}^{(1)}, \cdots, X_{t}^{(M)}\right)$ be the state at time $t=0,1, \cdots$, where $X_{t}^{(i)}$ is the number of the urn in which the i th ball resides at

[^0]time t, then $\left\{X_{t}: t=0,1, \cdots\right\}$ is a time homogeneous Markov chain on V_{M} with transition probability
\[

p_{\left(x_{1}, \cdots, x_{M}\right),\left(y_{1}, \cdots, y_{M}\right)}=\left\{$$
\begin{array}{cl}
\frac{1}{(n-1) M}, & \text { if there exists } i \text { s.t. } x_{i} \neq y_{i}, \text { and } x_{j}=y_{j} \text { for } j \neq i \tag{1.1}\\
0, & \text { otherwise } .
\end{array}
$$\right.
\]

For $x_{1}, \cdots, x_{M} \in\{1,2, \cdots, n\}$, denote by

$$
T_{\left(x_{1}, \cdots, x_{M}\right)}=\inf \left\{t \geq 0: X_{t}=\left(x_{1}, \cdots, x_{M}\right)\right\}
$$

the first time that $\left\{X_{t}\right\}$ hits state $\left(x_{1}, \cdots, x_{M}\right)$. Our main result is described in the following theorem.

Theorem 1.1. For any two different configurations $\left(a_{1}, \cdots, a_{M}\right),\left(b_{1}, \cdots, b_{M}\right) \in\{1, \cdots, n\}^{M}$, denote $L=\sum_{i=1}^{M} \mathbf{1}_{\left\{a_{i}=b_{i}\right\}}$. Then

$$
\mathbb{E}\left(T_{\left(b_{1}, \cdots, b_{M}\right)} \mid X_{0}=\left(a_{1}, \cdots, a_{M}\right)\right)=\sum_{k=L}^{M-1} \frac{(n-1)^{k+1}}{\binom{M-1}{k}} \sum_{i=0}^{k} \frac{\binom{M}{i}}{(n-1)^{i}},
$$

where $\mathbf{1}_{\{\cdot\}}$ denotes the indicator function, and $\binom{n}{m}:=\frac{n!}{m!(n-m)!}(0 \leq m \leq n)$ denotes the combinatorial number.

Note that when $L=M-1$, the righthand side of Theorem 1.1 becomes

$$
(n-1)^{M} \sum_{i=0}^{M-1} \frac{\binom{M}{i}}{(n-1)^{i}},
$$

which equals to $n^{M}-1$. This is a well known result in Markov chains.
As a special case, we obtain the following corollary, which provides the expected hitting time of moving all balls from Urn 1 to Urn 2.

Corollary 1.2. We have

$$
\mathbb{E}(T_{(\underbrace{(2,2, \cdots, 2)}_{M}} \left\lvert\, X_{0}=(\underbrace{1,1, \cdots, 1)}_{M})=\frac{(n-1) M}{n} \sum_{k=1}^{M} \frac{n^{k}}{k} .\right.
$$

Remark 1.1. (1) Chen et al. [3] proved Corollary 1.2 for the special case $n=3$ by using the method of electric networks. They conjectured that the result for general multiple-urn case should be of the form as stated in Corollary 1.2.
(2) Corollary 1.2 is a special case of Theorem 1.1 by letting $L=0$. This is not a straightforward result. A key step is to establish the equality

$$
\begin{equation*}
\sum_{k=0}^{M-1} \frac{(n-1)^{k}}{M\binom{M-1}{k}} \sum_{i=0}^{k} \frac{\binom{M}{i}}{(n-1)^{i}}=\frac{1}{n} \sum_{k=1}^{M} \frac{n^{k}}{k} . \tag{1.2}
\end{equation*}
$$

[^0]: *Corresponding author. Email addresses: abc_sophia123@126.com (Song S), qyao@sfs.ecnu.edu.cn (Yao Q)

