DOI: 10.4208/ata.OA-0022 June 2022

Monge-Ampère Equation with Bounded Periodic Data

YanYan Li^{1,*} and Siyuan Lu²

¹ Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

² Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada

Received 27 April 2021; Accepted (in revised version) 18 July 2021

Abstract. We consider the Monge-Ampère equation $\det(D^2u) = f$ in \mathbb{R}^n , where f is a positive bounded periodic function. We prove that u must be the sum of a quadratic polynomial and a periodic function. For $f \equiv 1$, this is the classic result by Jörgens, Calabi and Pogorelov. For $f \in C^{\alpha}$, this was proved by Caffarelli and the first named author.

Key Words: Monge-Ampère equation, Liouville theorem. **AMS Subject Classifications**: 53C20, 53C21, 58J05, 35J60

1 Introduction

A classic theorem of Jörgens [17], Calabi [11] and Pogorelov [20] states that any classical convex solution of

$$\det(D^2 u) = 1 \quad \text{in } \mathbb{R}^n$$

must be a quadratic polynomial.

A simpler and more analytical proof, along the lines of affine geometry, was later given by Cheng and Yau [12]. The theorem was extended by Caffarelli [1] to viscosity solutions. Another proof of the theorem was given by Jost and Xin [18]. Trudinger and Wang [21] proved that if Ω is an open convex subset of \mathbb{R}^n and u is a convex C^2 solution of det $(D^2u) = 1$ in Ω with $\lim_{x\to\partial\Omega} u(x) = \infty$, then $\Omega = \mathbb{R}^n$. Ferrer, Martínez and Milán [14, 15] extended the above Liouville type theorem in dimension two. Caffarelli and the first named author [8,9] made two extensions, and one of them includes periodic data.

More specificly, assume for some $a_1, \dots, a_n > 0$, *f* satisfies

$$f(x+a_ie_i) = f(x), \quad \forall x \in \mathbb{R}^n, \quad 1 \le i \le n,$$
(1.1)

http://www.global-sci.org/ata/

©2022 Global-Science Press

^{*}Corresponding author. *Email addresses:* yyli@math.rutgers.edu (Y. Li), siyuan.lu@mcmaster.ca (S. Lu)

Y. Li and S. Lu / Anal. Theory Appl., 38 (2022), pp. 128-147

where $e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$. Consider the Monge-Ampère equation

$$\det(D^2 u) = f \quad \text{in } \mathbb{R}^n. \tag{1.2}$$

Theorem A ([9]). Let $f \in C^{\alpha}(\mathbb{R}^n)$, $0 < \alpha < 1$ with f > 0 satisfy (1.1), and let $u \in C^2(\mathbb{R}^n)$ be a convex solution of (1.2). Then there exist $b \in \mathbb{R}^n$ and a symmetric positive definite $n \times n$ matrix A with

$$\det A = \oint_{\prod_{1 \le i \le n} [0,a_i]} f$$

such that

$$v := u - \frac{1}{2}x^T A x - b \cdot x$$

is *a_i*-periodic in *i*-th variable, *i*.e.,

$$v(x+a_ie_i)=v(x), \quad \forall x\in\mathbb{R}^n, \quad 1\leq i\leq n.$$

For applications, it is desirable to study the problem with less regularity assumption on f. It was conjectured in [9], see Remark 0.5 there, that Theorem A remains valid for $f \in L^{\infty}(\mathbb{R}^n)$ satisfying

$$0 < \inf_{\mathbb{R}^n} f \leq \sup_{\mathbb{R}^n} f < \infty.$$

We confirm the conjecture in Theorem 1.2 below.

We first recall the definition of a solution of (1.2) in the Alexandrov sense. Let *u* be a convex function in an open set Ω of \mathbb{R}^n . For $y \in \Omega$, denote

$$\nabla u(y) = \{ p \in \mathbb{R}^n | u(x) \ge u(y) + p \cdot (x - y), \, \forall x \in \Omega \}$$

the generalized gradient of *u* at *y*.

For $f \in L^{\infty}(\Omega)$ with $f \ge 0$ a.e., *u* is called a solution of

$$\det(D^2 u) = f \quad \text{in } \Omega$$

in the Alexandrov sense if *u* is a convex function in Ω and $|\nabla u(O)| = \int_O f$, for every open set $O \subset \Omega$.

Similarly, for a symmetric $n \times n$ matrix A, we say that $v \in C^{0,1}(\Omega)$ is a solution

$$\det(A + D^2 v) = f \quad \text{in } \Omega$$

in the Alexandrov sense if $u := \frac{1}{2}x^T A x + v$ is convex in Ω and satisfies

$$\det(D^2 u) = f \quad \text{in } \Omega$$

in the Alexandrov sense.

Our first result is the existence and uniqueness of periodic solutions for $f \in L^{\infty}$.