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Monge-Ampère Equation with Bounded Periodic Data
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Abstract. We consider the Monge-Ampère equation det(D2u) = f in Rn, where f is a
positive bounded periodic function. We prove that u must be the sum of a quadratic
polynomial and a periodic function. For f ≡ 1, this is the classic result by Jörgens,
Calabi and Pogorelov. For f ∈ Cα, this was proved by Caffarelli and the first named
author.
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1 Introduction

A classic theorem of Jörgens [17], Calabi [11] and Pogorelov [20] states that any classical
convex solution of

det(D2u) = 1 in Rn

must be a quadratic polynomial.
A simpler and more analytical proof, along the lines of affine geometry, was later

given by Cheng and Yau [12]. The theorem was extended by Caffarelli [1] to viscosity
solutions. Another proof of the theorem was given by Jost and Xin [18]. Trudinger and
Wang [21] proved that if Ω is an open convex subset of Rn and u is a convex C2 solution
of det(D2u) = 1 in Ω with limx→∂Ω u(x) = ∞, then Ω = Rn. Ferrer, Martı́nez and
Milán [14, 15] extended the above Liouville type theorem in dimension two. Caffarelli
and the first named author [8,9] made two extensions, and one of them includes periodic
data.

More specificly, assume for some a1, · · · , an > 0, f satisfies

f (x + aiei) = f (x), ∀x ∈ Rn, 1 ≤ i ≤ n, (1.1)
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where e1 = (1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1).
Consider the Monge-Ampère equation

det(D2u) = f in Rn. (1.2)

Theorem A ( [9]). Let f ∈ Cα(Rn), 0 < α < 1 with f > 0 satisfy (1.1), and let u ∈ C2(Rn)
be a convex solution of (1.2). Then there exist b ∈ Rn and a symmetric positive definite n× n
matrix A with

det A =

 
∏1≤i≤n[0,ai ]

f ,

such that
v := u− 1

2
xT Ax− b · x

is ai-periodic in i-th variable, i.e.,

v(x + aiei) = v(x), ∀x ∈ Rn, 1 ≤ i ≤ n.

For applications, it is desirable to study the problem with less regularity assumption
on f . It was conjectured in [9], see Remark 0.5 there, that Theorem A remains valid for
f ∈ L∞(Rn) satisfying

0 < inf
Rn

f ≤ sup
Rn

f < ∞.

We confirm the conjecture in Theorem 1.2 below.
We first recall the definition of a solution of (1.2) in the Alexandrov sense.
Let u be a convex function in an open set Ω of Rn. For y ∈ Ω, denote

∇u(y) = {p ∈ Rn|u(x) ≥ u(y) + p · (x− y), ∀x ∈ Ω}

the generalized gradient of u at y.
For f ∈ L∞(Ω) with f ≥ 0 a.e., u is called a solution of

det(D2u) = f in Ω

in the Alexandrov sense if u is a convex function in Ω and |∇u(O)| =
´

O f , for every
open set O ⊂ Ω.

Similarly, for a symmetric n× n matrix A, we say that v ∈ C0,1(Ω) is a solution

det(A + D2v) = f in Ω

in the Alexandrov sense if u := 1
2 xT Ax + v is convex in Ω and satisfies

det(D2u) = f in Ω

in the Alexandrov sense.
Our first result is the existence and uniqueness of periodic solutions for f ∈ L∞.


