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Spatiotemporal Dynamic Analysis in a Time-space
Discrete Brusselator Model

Hongxia Liu1, Ranchao Wu1,† and Biao Liu2

Abstract In this paper, we study the spatiotemporal patterns of a Brus-
selator model with discrete time-space by using the coupled mapping lattice
(CML) model. The existence and stability conditions of the equilibrium point
are obtained by using linear stability analysis. Then, applying the center
manifold reduction theorem and the bifurcation theory, the parametric condi-
tions of the flip and the Neimark-Sacker bifurcation are described respectively.
Under space diffusion, the model admits the Turing instability at stable homo-
geneous solutions under some certain conditions. Two nonlinear mechanisms,
including flip-Turing instability and Neimark-Sacker-Turing instability, are p-
resented. Through numerical simulation, periodic windows, invariant circles,
chaotic phenomenon and some interesting spatial patterns are found.
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1. Introduction

In 1952, Turing [29] proposed the reaction-diffusion coupling equation for the first
time, and obtained that the system transforms from a stable process to an unstable
process under the action of diffusion. He believed that the diffusion may destroy
the spatial homogeneous states and lead to non-homogeneous spatial patterns. This
instability is known as the Turing instability, which has been also known as the
diffusion-driven instability. In recent decades, Turing instability has been applied
to many fields such as biology, physics, chemistry, etc. In chemical systems, Turing
patterns can be produced by a number of reactions such as the famous Brusselator
model.

Brusselator model, as an autocatalytic reaction, was proposed by Prigogine and
Lefever [23] in the 1960s. Since then, it has attracted the attention of many schol-
ars, and detailed theoretical analysis and experimental research have been carried
out on the dynamic behavior of Brusselator system in continuous time and space.
It has been found that Hopf bifurcation and Turing instability would occur in the
continuous Brusselator system. The combination of Hopf bifurcation and Turing
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instability can produce some patterns. For example, it refers to [7, 9, 11, 15, 16, 18]
and their relevant literature.

In many cases, however, it is not continuous in time. For example, in [25], the
nonlinear dynamical behaviors of two discrete-time versions of the continuous time
Brusselator model were considered. Moreover, in [6], the dynamics of Brussela-
tor model with discrete time were studied, and a new chaos control method was
proposed based on bifurcation theory and center manifold theorem to control the
chaos of Brusselator model with discrete time under the influence of flip and Hopf
bifurcation.

As we know, there are many methods that can establish the discrete model.
Since the coupled mapping lattice (CML) model can discretize the corresponding
continuous reaction diffusion model, it has been widely used (see [3,13,28,31,33–35]).
The continuous system is discretized by CML model, which leads to the unique non-
linear mechanism and characteristics of the time-space discrete Brusselator system.
The most important nonlinear mechanisms are the various bifurcation behaviors,
including flip bifurcation and Neimark-Sacker bifurcation. As a unique bifurcation
phenomenon of discrete Brusselator system, flip bifurcation can lead to the forma-
tion of the path to chaos accompanied by period-doubling process. The combina-
tion of flip bifurcation and Turing instability can lead to the formation of complex
pattern patterns. As described in [17], Neimark-Sacker bifurcation in the discrete
system is the discrete counterpart of the Hopf bifurcation that occurs in the contin-
uous system. The combination of Neimark-Sacker bifurcation and Turing instability
gives rise to Neimark-Sacker-Turing instability, resulting in periodic orbits, invari-
ant circles, chaotic attractors and other complex patterns, which are of exploratory
significance. Therefore, we will consider the dynamical behavior of the time-space
discrete Brusselator model in this paper.

The center manifold reduction and normal form theory are frequently used in
the study of the bifurcation. For example, in [12], the stability and local Hopf bi-
furcation of Leslie-Gower predator-prey system with discrete distributed delay were
studied. By using the center manifold reduction and normal form theory, formu-
las were obtained to determine the stability and direction of periodic solutions of
Hopf bifurcation. Similarly, the classical Lotka-Volterra predator-prey model was
studied in [8]. The results showed that the existence of time delay will change the
stability of the equilibrium point, while the fear effect will stabilize the equilibrium
point. Using the the center manifold reduction and normal form theory, formula
for determining the stability and direction of Hopf bifurcation periodic solution was
derived.

The paper is organized as follows. In Section 2, the time-space discrete Brus-
selator model is developed, and the existence and stability conditions of the equi-
librium points are obtained. In Section 3, we give the parametric conditions for
the Neimark-Sacker, flip and Turing bifurcation to occur. In Section 4, numerical
simulations are presented to illustrate the theoretical results. The Turing instability
region is also identified. In Section 5, we draw some conclusions.
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