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Autonomous Planar Systems of Riccati Type

Gary R. Nicklason1,†

Abstract The role of Riccati type systems in the plane along with the re-
lated linear, second order differential equation is examined. If x and y are
the variables of the Riccati differential equation, then any integrable Riccati
system has two independent invariant curves dependent upon these variables
whose nature is easily determined from the solution of the linear equation.
Each of these curves has the same cofactor. Other invariant curves depend
upon x alone and are shown to be less important. The systems have both
Liouvillian and non–Liouvillian solutions and are easily transformable to sym-
metric systems. However, systems derived from them may not be symmetric
in their transformed variables. Several systems from the literature are dis-
cussed with regard to the forms of the invariant curves presented in the paper.
The relation of certain Riccati type systems is considered with respect to Abel
differential equations.
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1. Introduction

In this work, we consider differential polynomial systems in the plane having the
form

dx

dt
= −N(x, y),

dy

dt
= M(x, y)

(1.1)

for polynomials M, N and specifically their relation to Riccati systems for which
M(x, y) = P (x)y2 + Q(x)y + R(x), N(x, y) = N(x). Our primary interest will be
for the centre–focus cases

M(x, y) = x+ q(x, y),

N(x, y) = y + p(x, y),
(1.2)

where p, q are homogeneous polynomials of degree n ≥ 2 or

M(x, y) = x+ q2(x, y) + q3(x, y),

N(x, y) = y + p2(x, y) + p3(x, y),
(1.3)

†the corresponding author.
Email address: gary nicklason@cbu.ca (G. R. Nicklason)

1Department of Mathematics, Physics and Geology, Cape Breton University,
Sydney, Nova Scotia, B1P 6L2, Canada

http://dx.doi.org/10.12150/jnma.2022.171


172 G. R. Nicklason

where p2, q2 and p3, q3 are homogeneous polynomials of degree 2 and 3 respectively
and how these systems relate to the Riccati systems. We shall refer to the first
of these as homogeneous systems and to the second as cubic systems. We give
examples of this type that can be reduced to Riccati type systems. Associated with
(1.1) is the ordinary differential equation

dy

dx
= −M(x, y)

N(x, y)
. (1.4)

In these, we assume the variables along with any associated parameters in the
differential equations are real, although some of the latter could be complex.

The cubic system (1.3) is a particular case of a more general system of centre–
focus type in which the nonlinearity is expressed, as the sum of homogeneous polyno-
mials having degrees n and 2n−1 for integers n ≥ 2. The cubic system corresponds
to n = 2. In [22], the authors use a relation to an Abel differential equation to
consider certain centre conditions for the quintic n = 3 system.

A point (x0, y0) is said to be a critical point of (1.1), if M(x0, y0) = N(x0, y0) =
0. This point is said to be a centre if all trajectories of the system on a neighbourhood
of the critical point are closed. In his original work [20], Poincaré developed a
method for determining, if the origin is a centre by seeking an analytic solution to
(1.4), where M, N satisfy M(0, 0) = N(0, 0) = 0. This is given by

U(x, y) =
1

2
(x2 + y2) +

∞∑
k=3

Uk(x, y), (1.5)

where the Uk are homogeneous polynomials of degree k. The solution (1.5) is re-
quired to satisfy the condition

dU

dt
=
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
=

∞∑
k=2

Vk(x2 + y2)k.

The Vk are called Lyapunov coefficients and they are homogeneous polynomials in
the coefficients of the system. A necessary and sufficient condition for the critical
point (0, 0) to be a centre is the vanishing of all the Lyapunov coefficients. One
way of finding centre conditions is to compute several of the Vk, and then obtain
necessary conditions for them to vanish. From this, one hopes to show that these
conditions are sufficient so that all Vk = 0. In this case, (1.5) will have a form
which is convergent and the solution will be given by U(x, y) = C where C is a
constant. Another approach is to show that (1.4) can be solved. The main method
for doing this is the Darboux method. This approach has been well studied and a
great number of general results concerning it are known. It requires the existence
of algebraic invariant curves which are used to construct integrating factors, and
in some cases, solutions. An integrating factor of (1.4) is a function µ(x, y) which
satisfies the partial differential equation

−N(x, y)
∂µ

∂x
+M(x, y)

∂µ

∂y
=

(
∂N

∂x
− ∂M

∂y

)
µ. (1.6)

An algebraic invariant curve of a system (1.1) is an expression of the form f(x, y) = 0
where f is a polynomial. It is required to satisfy the partial differential equation

−N(x, y)
∂f

∂x
+M(x, y)

∂f

∂y
= λ(x, y)f. (1.7)
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