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A Note on the Stefan-Boltzmann Problem for
Heat Transfer in a Fin
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Abstract A fin is traditionally thought of as an extension of a surface to
facilitate the transfer of heat away from a larger body to which it is attached.
In this paper, the authors study some mathematical properties of a nonlinear
heat transfer model for a fin and its relation to an associated linear model.
Specifically, they prove that the solution exists and is unique, and they de-
termine bounds for the temperature. Further, they prove the monotonicity
of the temperature distribution, and they obtain an estimate for the maximal
difference between the temperatures as determined by the nonlinear and linear
models.
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1. Introduction

Extended surfaces, often called fins, are used in heat exchange devices to facilitate
the transfer of the heat away from the main body. The usual physical assumptions
in the heat transfer analysis of a fin are the following (see Lienhard IV and Lienhard
V [15]):

(i) Heat transfer is 1-D.

(ii) Heat transfer is steady-state.

(iii) The conduction coefficient k, the convective heat transfer coefficient h, and
the emmisivity ε are constant.

(iv) The temperature Tb at the base of the fin is constant.

(v) The temperature T∞ of the fluid surrounding the fin is constant.

(vi) The body of the fin is a solid of revolution.

Then, it is the temperature variation along the fin that needs to be determined as
a function of the distance from the base.
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Figure 1. Profile of a fin

The geometry of the fin is as follows: First, it is located on the interval [0, L] and
is attached to a heated surface at x = 0. The radius of the cross section is given by
r(x) : [0, L]→ R+, and the cross-sectional area, denoted by A(x), is A(x) = πr2(x).
The differential of surface area becomes dAs := P (x)dx = 2πr(x)

√
1 + [r′(x)]2dx.

We will denote the temperature distribution in the fin by T (x) : [0, L] → R+.
Then, the (steady-state) heat equation can be obtained from the energy balance for
the region between x and x+ dx; it has the form (see [6, 15,17,19])
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(T − T∞)− εσ dAs
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(T 4 − T 4

∞) = 0, x ∈ (0, L). (1.1)

The third term on the left hand side of this equation represents the amount of heat
transferred from the fin per unit area due to radiation. Here, ε is the emmisivity
of the fin face, and σ is the Stefan-Boltzmann constant. It is the presence of
the radiation effect that makes the equation nonlinear. Since the constant σ ≈
5.67 × 10−8Wm−2K−4 is small, at low temperatures the third term on the left
hand side of (1.1) may be neglected so that the equation reduces to the linear one
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(T − T∞) = 0, x ∈ (0, L). (1.2)

In addition to equations (1.1) and (1.2), we need to formulate the boundary condi-
tions (BCs) that are to be satisfied.

The temperature at x = 0 is assumed to be the same as that of the base, which is
namely Tb. At the right hand endpoint x = L, we assume that we have an adiabatic
condition. Thus, our boundary conditions become

T (0) = Tb and

(
A
d

dx
T (x)

) ∣∣∣∣
x=L

= 0. (1.3)

Boundary conditions other than (1.3) have been considered in the literature. For
example, see [6, 15,19].

Remark 1.1. In [17], the (steady-state) heat equation for a circular fin is given in
the form (as adjusted to our notation)
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∞) = 0, r ∈ (rb, rt), (1.4)
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